Achieving the Inhibition of Aluminum Corrosion by Dual-Salt Electrolytes for Sodium-Ion Batteries

被引:3
|
作者
Huang, Longqing [1 ]
Qiu, Qian [1 ]
Yang, Ming [3 ]
Li, Haoxiang [1 ]
Zhu, Jialing [1 ]
Zhang, Wenjun [2 ]
Wang, Shuai [1 ]
Xia, Lan [1 ]
Mueller-Buschbaum, Peter [3 ]
机构
[1] Ningbo Univ, Fac Maritime & Transportat, Ningbo Innovat Team New Energies & Marine Applicat, Ningbo 315211, Peoples R China
[2] Ningbo Univ Technol, Coll New Energy, Ningbo 315211, Peoples R China
[3] Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, D-85748 Garching, Germany
基金
中国国家自然科学基金;
关键词
sodium-ion batteries; sodium bis(fluorosulfony)imide(NaFSI); aluminum collector; corrosion; dual-salt electrolytes; NONAQUEOUS ELECTROLYTES; CURRENT COLLECTOR; BEHAVIOR; LIFSI;
D O I
10.1021/acsami.4c10970
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Sodium bis(fluorosulfonyl)imide (NaFSI) electrolytes are renowned for their superior physicochemical and electrochemical properties, making them ideal for high-performance sodium-ion batteries (SIBs). However, severe oxidative dissolution of aluminum current collectors (commonly known as Al corrosion) in NaFSI-based electrolytes occurs at high potentials. To address this challenge, aiming to understand the Al corrosion mechanism and develop strategies to inhibit corrosion, we propose dual-salt electrolytes using 0.8 mol L-1 (M) NaFSI and 0.2 M of a second fluorine-containing sodium salt dissolved in EC/PC solutions (1:1, v/v) to construct an insoluble deposits layer on the Al. Dual-salt electrolytes adopting a second sodium salt capable of passivating the Al collector have been extensively investigated through various techniques, such as cyclic voltammetry, scanning electron microscopy, chronoamperometry, X-ray photoelectron spectroscopy, and charge-discharge tests. Our findings demonstrate that introducing sodium difluoro(oxalato)borate (NaDFOB) into the NaFSI electrolytes inhibits Al corrosion, which is attributed to the formation of insoluble deposits of Al-F (AlF3) and B-F containing polymers. Moreover, the capacity retention of Na||Na3V2(PO4)(3) (NVP) cells using the NaFSI-NaDFOB dual-salt electrolyte reaches 99.2% along with a Coulombic efficiency over 99.3% at a 1 C rate after 200 cycles. This research provides a practical solution for passivating Al collectors in SIBs with NaFSI electrolytes and promotes the development of sodium batteries with long calendar lifetimes.
引用
收藏
页码:46392 / 46400
页数:9
相关论文
共 50 条
  • [41] Anodic Aluminum Dissolution of LiTFSA Containing Electrolytes for Li-Ion-Batteries
    Hofmann, Andreas
    Merklein, Lisa
    Schulz, Michael
    Hanemann, Thomas
    ELECTROCHIMICA ACTA, 2014, 116 : 388 - 395
  • [42] Achieving a Deeply Desodiated Stabilized Cathode Material by the High Entropy Strategy for Sodium-ion Batteries
    Liu, Zhaoguo
    Liu, Rixin
    Xu, Sheng
    Tian, Jiaming
    Li, Jingchang
    Li, Haoyu
    Yu, Tao
    Chu, Shiyong
    M. D'Angelo, Anita
    Pang, Wei Kong
    Zhang, Liang
    Guo, Shaohua
    Zhou, Haoshen
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (29)
  • [43] Molten salt synthesis of carbon anode for high-performance sodium-ion batteries
    Song, Qiushi
    Zhao, Hengpeng
    Zhao, Jie
    Chen, Denghui
    Xu, Qian
    Xie, Hongwei
    Ning, Zhiqiang
    Yu, Kai
    ELECTROCHIMICA ACTA, 2023, 447
  • [44] Electrolytes and Electrolyte/Electrode Interfaces in Sodium-Ion Batteries: From Scientific Research to Practical Application
    Huang, Yongxin
    Zhao, Luzi
    Li, Li
    Xie, Man
    Wu, Feng
    Chen, Renjie
    ADVANCED MATERIALS, 2019, 31 (21)
  • [45] A Review of Modification Methods of Solid Electrolytes for All-Solid-State Sodium-Ion Batteries
    Dai, Hanqing
    Chen, Yuanyuan
    Xu, Wenqian
    Hu, Zhe
    Gu, Jing
    Wei, Xian
    Xie, Fengxian
    Zhang, Wanlu
    Wei, Wei
    Guo, Ruiqian
    Zhang, Guoqi
    ENERGY TECHNOLOGY, 2021, 9 (01)
  • [46] Tailoring the Properties of Gel Polymer Electrolytes for Sodium-Ion Batteries Using Ionic Liquids: A Review
    Gabryelczyk, Agnieszka
    Swiderska-Mocek, Agnieszka
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (27)
  • [47] Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries
    Lin, Zeheng
    Xia, Qingbing
    Wang, Wanlin
    Li, Weishan
    Chou, Shulei
    INFOMAT, 2019, 1 (03) : 376 - 389
  • [48] Reversible Copper Sulfide Conversion in Nonflammable Trimethyl Phosphate Electrolytes for Safe Sodium-Ion Batteries
    Li, Huihua
    Zhang, Huang
    Diemant, Thomas
    Behm, R. Juergen
    Geiger, Dorin
    Kaiser, Ute
    Varzi, Alberto
    Passerini, Stefano
    SMALL STRUCTURES, 2021, 2 (08):
  • [49] Outstanding Compatibility of Hard-Carbon Anodes for Sodium-Ion Batteries in Ionic Liquid Electrolytes
    Maresca, Giovanna
    Petrongari, Angelica
    Brutti, Sergio
    Battista Appetecchi, Giovanni
    CHEMSUSCHEM, 2023, 16 (23)
  • [50] Recent Advances on Sodium-Ion Batteries and Sodium Dual-Ion Batteries: State-of-the-Art Na+ Host Anode Materials
    Gong, Decai
    Wei, Chenyang
    Liang, Zhongwang
    Tang, Yongbing
    SMALL SCIENCE, 2021, 1 (06):