The modified Gerchberg-Saxton algorithm for subwavelength resolution holographic image with speckle suppression

被引:1
作者
Zhou, Yucheng [1 ]
Pan, Yifeng [1 ]
Gong, Peng [1 ]
Wu, Shijun [1 ]
Qiu, Shiqiang [1 ]
Zhou, Qinghong [1 ]
机构
[1] Southwest Univ Sci & Technol, Sch Math & Phys, Mianyang 621010, Peoples R China
基金
中国国家自然科学基金;
关键词
phase-only hologram; subwavelength resolution imaging; Gerchberg-Saxton algorithm; PHASE RETRIEVAL; RECONSTRUCTION; PROJECTION; SYSTEM;
D O I
10.1088/2040-8986/ad7512
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Gerchberg-Saxton algorithm is widely recognized as one of the most popular methods for calculating phase-only holograms. However, due to bandwidth limitations, this iterative method is not suitable for designing subwavelength resolution holograms. To address this challenge, we have modified the angular spectrum method (ASM) by incorporating additional information to compensate for lost high-frequency details in inverse propagation. In order to mitigate optical speckle artifacts that arise in the computational process, we have integrated the double amplitude freedom (DAF) into our approach. Furthermore, we have implemented a narrow probability distribution in the initial phase mask as a key strategy to minimize fluctuations in the intensity of the reconstructions. Our proposed method has successfully achieved subwavelength resolution reconstructions with reduced speckle noise.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Complete optical field reconstruction and determination of linewidth enhancement factor in gain-switched semiconductor lasers using the Gerchberg-Saxton algorithm
    Rosado, Alejandro
    Esquivias, Ignacio
    [J]. OPTICS AND LASER TECHNOLOGY, 2025, 181
  • [42] Reconstructions from randomly generated longitudinal electron bunch profiles with Gaussian envelopes using the Gerchberg-Saxton algorithm
    Ostler, Bricker
    Yampolsky, Nikolai
    Marksteiner, Quinn
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (09)
  • [43] Non-linear signal retrieval in wide-band photonic time-stretch systems using the Gerchberg-Saxton algorithm
    Stigwall, Johan
    Galt, Sheila
    [J]. 2006 INTERNATIONAL TOPICAL MEETING ON MICROWAVES PHOTONICS, 2006, : 105 - +
  • [44] Triple-level cryptosystem using deterministic masks and modified gerchberg-saxton iterative algorithm in fractional Hartley domain by positioning singular value decomposition
    Girija, R.
    Singh, Hukum
    [J]. OPTIK, 2019, 187 : 238 - 257
  • [45] Gerchberg-Saxton algorithm and angular-spectrum layer-oriented method for true color three-dimensional display
    Fan Shuang
    Zhang Ya-Ping
    Wang Fan
    Gao Yun-Long
    Qian Xiao-Fan
    Zhang Yong-An
    Xu Wei
    Cao Liang-Cai
    [J]. ACTA PHYSICA SINICA, 2018, 67 (09)
  • [46] 3D mapping in optical trapping of polystyrene particles applying the Gerchberg-Saxton modified with 2D Legendre polynomials
    Arriaga Hernandez, J. A.
    Cuevas Otahola, B.
    Oliveros Oliveros, J.
    Morin Castillo, M.
    [J]. JOURNAL OF OPTICS, 2021, 23 (12)
  • [47] High-quality and efficient phase-only hologram generation method based on complex amplitude constrained Gerchberg-Saxton algorithm☆
    Hou, Ye-Hao
    Li, Zhao-Song
    Zheng, Yi-Wei
    Huang, Qian
    Li, Yi-Long
    Wang, Di
    Wang, Qiong-Hua
    [J]. DISPLAYS, 2025, 87
  • [48] Adaptive optics compensation of orbital angular momentum beams with a modified Gerchberg-Saxton-based phase retrieval algorithm
    Chang, Huan
    Yin, Xiao-li
    Cui, Xiao-zhou
    Zhang, Zhi-chao
    Ma, Jian-xin
    Wu, Guo-hua
    Zhang, Li-jia
    Xin, Xiang-jun
    [J]. OPTICS COMMUNICATIONS, 2017, 405 : 271 - 275
  • [49] Unequal modulus decomposition and modified Gerchberg Saxton algorithm based asymmetric cryptosystem in Chirp-Z transform domain
    Sachin, Sachin
    Kumar, Ravi
    Singh, Phool
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (05)
  • [50] Method of Speckle Noise Suppression for Holographic Zoom Display Based on Layered-Pixel-Scanning Algorithm
    Wang, Di
    Li, Nan-Nan
    Chang, Chen-Liang
    Liu, Chao
    Wang, Qiong-Hua
    [J]. IEEE ACCESS, 2020, 8 : 102128 - 102137