Hybrid retrieval of grass biophysical variables based-on radiative transfer, active learning and regression methods using Sentinel-2 data in Marakele National Park

被引:1
作者
Tsele, Philemon [1 ]
Ramoelo, Abel [2 ]
机构
[1] Univ Pretoria, Dept Geog Geoinformat & Meteorol, Pretoria, South Africa
[2] Univ Pretoria, Ctr Environm Studies, Dept Geog Geoinformat & Meteorol, Pretoria, South Africa
关键词
Leaf area index (LAI); leaf chlorophyll content (LCC); Sentinel-2; imagery; active learning; PROSAIL; LEAF-AREA INDEX; CHLOROPHYLL CONTENT; VEGETATION INDEXES; MODEL; LAI; INVERSION; REFLECTANCE; INFORMATION; CLASSIFICATION; PARAMETERS;
D O I
10.1080/10106049.2024.2387087
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Biophysical variables such as leaf area index (LAI) and leaf chlorophyll content (LCC) are cited as essential biodiversity variables. A comprehensive comparison and integration of retrieval methods is needed for the estimation of biophysical variables such as LAI and LCC over a multispecies grass canopy. This study tested an assortment of five potentially robust, nonparametric regression methods (NPRMs) for inversion of radiative transfer model (RTM) to retrieve grass LAI and LCC in the Marakele National Park (MNP) of South Africa. The NPRMs used were, namely (i) Partial least squares regression (PLSR), (ii) Principle components regression (PCR), (iii) Kernel ridge regression (KRR), (iv) Random forest regression (RFR), and (v) K-nearest neighbours regression (KNNR). Furthermore, the study attempted to constrain the inversion process by using active learning (AL) techniques which ensured the selection of informative samples from a large pool of RTM simulations. Results show the most accurate grass LAI and LCC retrievals had lower relative root mean squared errors (RRMSEs) of 39.87% and 16.58% respectively. These findings have significant implications for the development of transferable rangeland monitoring systems in protected mountainous regions.
引用
收藏
页数:25
相关论文
共 77 条
[41]   Estimating Crop Biophysical Parameters Using Machine Learning Algorithms and Sentinel-2 Imagery [J].
Kganyago, Mahlatse ;
Mhangara, Paidamwoyo ;
Adjorlolo, Clement .
REMOTE SENSING, 2021, 13 (21)
[42]   Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method [J].
Liang, Liang ;
Qin, Zhihao ;
Zhao, Shuhe ;
Di, Liping ;
Zhang, Chao ;
Deng, Meixia ;
Lin, Hui ;
Zhang, Lianpeng ;
Wang, Lijuan ;
Liu, Zhixiao .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (13) :2923-2949
[43]  
Louis J., 2016, P LIV PLAN S, P1
[44]   Remote Sensing-Guided Spatial Sampling Strategy over Heterogeneous Surface Ground for Validation of Vegetation Indices Products with Medium and High Spatial Resolution [J].
Lv, Tingting ;
Zhou, Xiang ;
Tao, Zui ;
Sun, Xiaoyu ;
Wang, Jin ;
Li, Ruoxi ;
Xie, Futai .
REMOTE SENSING, 2021, 13 (14)
[45]   INFORMATION-BASED OBJECTIVE FUNCTIONS FOR ACTIVE DATA SELECTION [J].
MACKAY, DJC .
NEURAL COMPUTATION, 1992, 4 (04) :590-604
[46]   Calibration of the Minolta SPAD-502 leaf chlorophyll meter [J].
Markwell, J ;
Osterman, JC ;
Mitchell, JL .
PHOTOSYNTHESIS RESEARCH, 1995, 46 (03) :467-472
[47]   Comparison of Landsat 8 OLI and Landsat 7 ETM+ for estimating grassland LAI using model inversion and spectral indices: case study of Mpumalanga, South Africa [J].
Masemola, Cecilia ;
Cho, Moses Azong ;
Ramoelo, Abel .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (18) :4401-4419
[48]  
Mucina Ladislav, 2006, V19, P2
[49]   High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm [J].
Mutanga, Onisimo ;
Adam, Elhadi ;
Cho, Moses Azong .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2012, 18 :399-406
[50]   Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data [J].
Myneni, RB ;
Hoffman, S ;
Knyazikhin, Y ;
Privette, JL ;
Glassy, J ;
Tian, Y ;
Wang, Y ;
Song, X ;
Zhang, Y ;
Smith, GR ;
Lotsch, A ;
Friedl, M ;
Morisette, JT ;
Votava, P ;
Nemani, RR ;
Running, SW .
REMOTE SENSING OF ENVIRONMENT, 2002, 83 (1-2) :214-231