Hybrid retrieval of grass biophysical variables based-on radiative transfer, active learning and regression methods using Sentinel-2 data in Marakele National Park
被引:1
作者:
Tsele, Philemon
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pretoria, Dept Geog Geoinformat & Meteorol, Pretoria, South AfricaUniv Pretoria, Dept Geog Geoinformat & Meteorol, Pretoria, South Africa
Tsele, Philemon
[1
]
Ramoelo, Abel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pretoria, Ctr Environm Studies, Dept Geog Geoinformat & Meteorol, Pretoria, South AfricaUniv Pretoria, Dept Geog Geoinformat & Meteorol, Pretoria, South Africa
Ramoelo, Abel
[2
]
机构:
[1] Univ Pretoria, Dept Geog Geoinformat & Meteorol, Pretoria, South Africa
[2] Univ Pretoria, Ctr Environm Studies, Dept Geog Geoinformat & Meteorol, Pretoria, South Africa
Leaf area index (LAI);
leaf chlorophyll content (LCC);
Sentinel-2;
imagery;
active learning;
PROSAIL;
LEAF-AREA INDEX;
CHLOROPHYLL CONTENT;
VEGETATION INDEXES;
MODEL;
LAI;
INVERSION;
REFLECTANCE;
INFORMATION;
CLASSIFICATION;
PARAMETERS;
D O I:
10.1080/10106049.2024.2387087
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Biophysical variables such as leaf area index (LAI) and leaf chlorophyll content (LCC) are cited as essential biodiversity variables. A comprehensive comparison and integration of retrieval methods is needed for the estimation of biophysical variables such as LAI and LCC over a multispecies grass canopy. This study tested an assortment of five potentially robust, nonparametric regression methods (NPRMs) for inversion of radiative transfer model (RTM) to retrieve grass LAI and LCC in the Marakele National Park (MNP) of South Africa. The NPRMs used were, namely (i) Partial least squares regression (PLSR), (ii) Principle components regression (PCR), (iii) Kernel ridge regression (KRR), (iv) Random forest regression (RFR), and (v) K-nearest neighbours regression (KNNR). Furthermore, the study attempted to constrain the inversion process by using active learning (AL) techniques which ensured the selection of informative samples from a large pool of RTM simulations. Results show the most accurate grass LAI and LCC retrievals had lower relative root mean squared errors (RRMSEs) of 39.87% and 16.58% respectively. These findings have significant implications for the development of transferable rangeland monitoring systems in protected mountainous regions.
机构:
European Space Agcy ESRIN, Via Galileo Galilei,Casella Postale 64, I-00044 Frascati, RM, ItalyUniv Twente, Fac Geoinformat Sci & Earth Observat ITC, POB 217, NL-7500 AE Enschede, Netherlands
机构:
Commiss European Communities, Joint Res Ctr, IPSC, MARS Unit, I-21027 Ispra, ItalyCommiss European Communities, Joint Res Ctr, IPSC, MARS Unit, I-21027 Ispra, Italy
Atzberger, Clement
;
Guerif, Martine
论文数: 0引用数: 0
h-index: 0
机构:
INRA, F-84000 Avignon, FranceCommiss European Communities, Joint Res Ctr, IPSC, MARS Unit, I-21027 Ispra, Italy
Guerif, Martine
;
Baret, Frederic
论文数: 0引用数: 0
h-index: 0
机构:
INRA, F-84000 Avignon, FranceCommiss European Communities, Joint Res Ctr, IPSC, MARS Unit, I-21027 Ispra, Italy
机构:
Univ Rey Juan Carlos URJC, Dept Signal Proc, Madrid 28933, SpainLudwig Maximilians Univ Munchen LMU, Dept Geog, Luisenstr 37, D-80333 Munich, Germany
机构:
European Space Agcy ESRIN, Via Galileo Galilei,Casella Postale 64, I-00044 Frascati, RM, ItalyUniv Twente, Fac Geoinformat Sci & Earth Observat ITC, POB 217, NL-7500 AE Enschede, Netherlands
机构:
Commiss European Communities, Joint Res Ctr, IPSC, MARS Unit, I-21027 Ispra, ItalyCommiss European Communities, Joint Res Ctr, IPSC, MARS Unit, I-21027 Ispra, Italy
Atzberger, Clement
;
Guerif, Martine
论文数: 0引用数: 0
h-index: 0
机构:
INRA, F-84000 Avignon, FranceCommiss European Communities, Joint Res Ctr, IPSC, MARS Unit, I-21027 Ispra, Italy
Guerif, Martine
;
Baret, Frederic
论文数: 0引用数: 0
h-index: 0
机构:
INRA, F-84000 Avignon, FranceCommiss European Communities, Joint Res Ctr, IPSC, MARS Unit, I-21027 Ispra, Italy
机构:
Univ Rey Juan Carlos URJC, Dept Signal Proc, Madrid 28933, SpainLudwig Maximilians Univ Munchen LMU, Dept Geog, Luisenstr 37, D-80333 Munich, Germany