Hybrid retrieval of grass biophysical variables based-on radiative transfer, active learning and regression methods using Sentinel-2 data in Marakele National Park

被引:1
作者
Tsele, Philemon [1 ]
Ramoelo, Abel [2 ]
机构
[1] Univ Pretoria, Dept Geog Geoinformat & Meteorol, Pretoria, South Africa
[2] Univ Pretoria, Ctr Environm Studies, Dept Geog Geoinformat & Meteorol, Pretoria, South Africa
关键词
Leaf area index (LAI); leaf chlorophyll content (LCC); Sentinel-2; imagery; active learning; PROSAIL; LEAF-AREA INDEX; CHLOROPHYLL CONTENT; VEGETATION INDEXES; MODEL; LAI; INVERSION; REFLECTANCE; INFORMATION; CLASSIFICATION; PARAMETERS;
D O I
10.1080/10106049.2024.2387087
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Biophysical variables such as leaf area index (LAI) and leaf chlorophyll content (LCC) are cited as essential biodiversity variables. A comprehensive comparison and integration of retrieval methods is needed for the estimation of biophysical variables such as LAI and LCC over a multispecies grass canopy. This study tested an assortment of five potentially robust, nonparametric regression methods (NPRMs) for inversion of radiative transfer model (RTM) to retrieve grass LAI and LCC in the Marakele National Park (MNP) of South Africa. The NPRMs used were, namely (i) Partial least squares regression (PLSR), (ii) Principle components regression (PCR), (iii) Kernel ridge regression (KRR), (iv) Random forest regression (RFR), and (v) K-nearest neighbours regression (KNNR). Furthermore, the study attempted to constrain the inversion process by using active learning (AL) techniques which ensured the selection of informative samples from a large pool of RTM simulations. Results show the most accurate grass LAI and LCC retrievals had lower relative root mean squared errors (RRMSEs) of 39.87% and 16.58% respectively. These findings have significant implications for the development of transferable rangeland monitoring systems in protected mountainous regions.
引用
收藏
页数:25
相关论文
共 77 条
[1]   Machine learning methods' performance in radiative transfer model inversion to retrieve plant traits from Sentinel-2 data of a mixed mountain forest [J].
Ali, Abebe Mohammed ;
Darvishzadeh, Roshanak ;
Skidmore, Andrew ;
Gara, Tawanda W. ;
Heurich, Marco .
INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2021, 14 (01) :106-120
[2]   Comparing methods for mapping canopy chlorophyll content in a mixed mountain forest using Sentinel-2 data [J].
Ali, Abebe Mohammed ;
Darvishzadeh, Roshanak ;
Skidmore, Andrew ;
Gara, Tawanda W. ;
O'Connor, Brian ;
Roeoesli, Claudia ;
Heurich, Marco ;
Paganini, Marc .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 87
[3]   Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy [J].
Atzberger, Clement ;
Darvishzadeh, Roshanak ;
Immitzer, Markus ;
Schlerf, Martin ;
Skidmore, Andrew ;
le Maire, Guerric .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 43 :19-31
[4]   Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat [J].
Atzberger, Clement ;
Guerif, Martine ;
Baret, Frederic ;
Werner, Willy .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2010, 73 (02) :165-173
[5]   Neural network estimation of LAI, fAPAR, fCover and LAIxCab, from top of canopy MERIS reflectance data:: Principles and validation [J].
Bacour, C. ;
Baret, F. ;
Beal, D. ;
Weiss, M. ;
Pavageau, K. .
REMOTE SENSING OF ENVIRONMENT, 2006, 105 (04) :313-325
[6]   GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production [J].
Baret, F. ;
Weiss, M. ;
Lacaze, R. ;
Camacho, F. ;
Makhmara, H. ;
Pacholcyzk, P. ;
Smets, B. .
REMOTE SENSING OF ENVIRONMENT, 2013, 137 :299-309
[7]   MODELED ANALYSIS OF THE BIOPHYSICAL NATURE OF SPECTRAL SHIFTS AND COMPARISON WITH INFORMATION-CONTENT OF BROAD BANDS [J].
BARET, F ;
JACQUEMOUD, S ;
GUYOT, G ;
LEPRIEUR, C .
REMOTE SENSING OF ENVIRONMENT, 1992, 41 (2-3) :133-142
[8]   A Survey of Active Learning for Quantifying Vegetation Traits from Terrestrial Earth Observation Data [J].
Berger, Katja ;
Rivera Caicedo, Juan Pablo ;
Martino, Luca ;
Wocher, Matthias ;
Hank, Tobias ;
Verrelst, Jochem .
REMOTE SENSING, 2021, 13 (02) :1-23
[9]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[10]  
Breiman L., 2017, Classification and Regression Trees, DOI [DOI 10.1201/9781315139470, DOI 10.1201/9781315139470-8, 10.1201/9781315139470-8]