Parallelization of frequency domain quantum gates: manipulation and distribution of frequency-entangled photon pairs generated by a 21 GHz silicon microresonator

被引:2
|
作者
Henry, Antoine [1 ]
Fioretto, Dario A. [2 ]
Procopio, Lorenzo M. [3 ]
Monfray, Stephane [4 ]
Boeuf, Frederic [4 ]
Vivien, Laurent [2 ]
Cassan, Eric [2 ]
Alonzo-Ramos, Carlos [2 ]
Bencheikh, Kamel [2 ]
Zaquine, Isabelle [1 ]
Belabas, Nadia [2 ]
机构
[1] Inst Polytech Paris, LTCI, Telecom Paris, Palaiseau, France
[2] Univ Paris Saclay, CNRS, Ctr Nanosci & Nanotechnol, UMR 9001, Palaiseau, France
[3] Weizmann Inst Sci, Rehovot, Israel
[4] STMicroelectron SAS, Crolles, France
来源
ADVANCED PHOTONICS | 2024年 / 6卷 / 03期
基金
欧盟地平线“2020”;
关键词
integrated photonics; frequency domain; quantum gates; quantum networks; BIN ENTANGLEMENT; CHIP; INTERFERENCE; COMB;
D O I
10.1117/1.AP.6.3.036003
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Harnessing the frequency dimension in integrated photonics offers key advantages in terms of scalability, noise resilience, parallelization, and compatibility with telecom multiplexing techniques. Integrated ring resonators have been used to generate frequency-entangled states through spontaneous four-wave mixing. However, state-of-the-art integrated resonators are limited by trade-offs among size, spectral separation, and efficient photon pair generation. We have developed silicon ring resonators with a footprint below 0.05mm2 providing more than 70 frequency channels separated by 21 GHz. We exploit the narrow frequency separation to parallelize and independently control 34 single qubit-gates with a single set of three off-the-shelf electro-optic devices. We fully characterize 17 frequency-bin maximally entangled qubit pairs by performing quantum state tomography. We demonstrate for the first time, we believe, a fully connected five-user quantum network in the frequency domain. These results are a step towards a generation of quantum circuits implemented with scalable silicon photonics technology, for applications in quantum computing and secure communications.
引用
收藏
页数:10
相关论文
共 27 条
  • [21] Quantum frequency conversion for multiplexed entangled states generated from micro-ring silicon chip
    Li, Yin-Hai
    Fang, Wen-Tan
    Zhou, Zhi-Yuan
    Liu, Shi-Long
    Liu, Shi-Kai
    Xu, Zhao-Huai
    Yang, Chen
    Li, Yan
    Xu, Li-Xin
    Guo, Guang-Can
    Shi, Bao-Sen
    OPTICS EXPRESS, 2018, 26 (22): : 28429 - 28440
  • [22] Proposal for generating telecommunication-wavelength entangled photon pairs from a quantum dot by frequency down-conversion
    Wang, Yi-Tao
    Tang, Jian-Shun
    Li, Yu-Long
    Li, Chuan-Feng
    Guo, Guang-Can
    PHYSICAL REVIEW A, 2013, 88 (03):
  • [23] Telecom-band two-photon Michelson interferometer using frequency entangled photon pairs generated by spontaneous parametric down-conversion
    Yoshizawa, Akio
    Fukuda, Daiji
    Tsuchida, Hidemi
    OPTICS COMMUNICATIONS, 2014, 313 : 333 - 336
  • [24] High-precision quantum transmittometry of DNA and methylene-blue using a frequency-entangled twin-photon beam in type-I SPDC
    Motazedifard, Ali
    Madani, Seyed Ahmad
    OSA CONTINUUM, 2021, 4 (03): : 1049 - 1069
  • [25] 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator
    Imany, Poolad
    Jaramillo-Villegas, Jose A.
    Odele, Ogaga D.
    Han, Kyunghun
    Leaird, Daniel E.
    Lukens, Joseph M.
    Lougovski, Pavel
    Qi, Minghao
    Weiner, Andrew M.
    OPTICS EXPRESS, 2018, 26 (02): : 1825 - 1840
  • [26] Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion
    Baek, So-Young
    Kim, Yoon-Ho
    PHYSICAL REVIEW A, 2008, 77 (04):
  • [27] Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors
    Honjo, T.
    Takesue, H.
    Kamada, H.
    Nishida, Y.
    Tadanaga, O.
    Asobe, M.
    Inoue, K.
    OPTICS EXPRESS, 2007, 15 (21) : 13957 - 13964