Performance analysis and experimental study of titanium GDL in proton exchange membrane fuel cell

被引:3
|
作者
Ma, Tiancai [1 ,2 ]
Guo, Huijin [1 ,2 ,3 ]
Gu, Ziheng [1 ]
Lin, Weikang [4 ]
Qi, Jinxuan [1 ]
Yu, Chaofan [3 ]
Li, Jianghua [3 ]
机构
[1] Tongji Univ, Sch Automot Studies, 4800 Caoan Highway, Shanghai 201804, Peoples R China
[2] Tongji Univ, Inst Carbon Neutral, Shanghai 200092, Peoples R China
[3] AT&M Environm Engn Technol Co Ltd, 76 Xueyuan South Rd, Beijing 100081, Peoples R China
[4] Shanghai Champspower Technol Co Ltd, Shanghai 201800, Peoples R China
关键词
GDL; Ti felt; Contact angle; Contact resistance; GAS-DIFFUSION LAYER; STEEL FIBER FELT; ELECTRICAL-CONDUCTIVITY; MICROPOROUS LAYER; WATER MANAGEMENT; FABRICATION; TRANSPORT; POROSITY; BACKING; PEMFC;
D O I
10.1016/j.ijhydene.2024.08.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The gas diffusion layer (GDL) plays an important role in proton exchange membrane fuel cells (PEMFC) to support the catalytic layer, collect the current, conduct the gas and discharge the reaction product water. Titanium (Ti) can be one of the choices of GDL materials due to its high strength, low density and excellent corrosion resistance. Therefore, this paper investigated Ti substrate material for GDL and comparatively analyzed the changes in the contact angle of the GDL before and after hydrophobic treatment, analyzed the changes in the performance of the cell after different treatment processes, and measured the effect of compression force on the contact resistance of the cell. The results show that, after the selection of Ti felt as the substrate and the carbon plating process, the contact angle of the substrate layer and the microporous layer increased significantly, and the hydrophobicity of the GDL surface improved after carbon plating. The contact resistance of the Ti felt substrate was significantly reduced after carbon plating and was even lower than that of the C-H-060 substrate. Considering the importance of the hydrophobicity of GDL, acetylene black microporous layer coating is also needed to increase the contact angle of the GDL interface and improve the hydrophobicity of GDL. The hydrophobic treatment of MPL using Ti felt as the substrate can significantly improve the output performance of the cell at high current density, avoid flooding inside the cell, and increase the current density operating range of the cell.
引用
收藏
页码:604 / 613
页数:10
相关论文
共 50 条
  • [31] Analysis of the Influence of Geometrical Parameters on the Performance of a Proton Exchange Membrane Fuel Cell
    Zhang, Guodong
    Tao, Huifang
    Li, Da
    Chen, Kewei
    Li, Guoxiang
    Bai, Shuzhan
    Sun, Ke
    FDMP-FLUID DYNAMICS & MATERIALS PROCESSING, 2024, 20 (01): : 219 - 237
  • [32] Trapezoidal Channel Proton-Exchange Membrane Fuel Cell Performance Study
    Mei, Nan
    Xu, Xiaoming
    Hu, Hao
    Li, Chen
    ENERGY & FUELS, 2020, 34 (12) : 16729 - 16735
  • [33] Illustrative Case Study on the Performance and Optimization of Proton Exchange Membrane Fuel Cell
    Yuan, Yuan
    Qu, Zhiguo
    Wang, Wenkai
    Ren, Guofu
    Hu, Baobao
    CHEMENGINEERING, 2019, 3 (01) : 1 - 15
  • [34] Analytical and experimental investigations of a proton exchange membrane fuel cell
    Ferng, YM
    Tzang, YC
    Pei, BS
    Sun, CC
    Su, A
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (04) : 381 - 391
  • [35] Experimental Investigation of Irreversibility of a Proton Exchange Membrane Fuel Cell
    Khazaee, I.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2012, 134 (02):
  • [36] Thermodynamic analysis of a Proton Exchange Membrane fuel cell
    Ozgur, Tayfun
    Yakaryilmaz, Ali Cem
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (38) : 18007 - 18013
  • [37] Stress Analysis of Proton Exchange Membrane Fuel Cell
    Miftah, Kurniawan
    Ramli, Wan Wan Daud
    Edy, Herianto Majlan
    ADVANCES IN MECHANICAL ENGINEERING, PTS 1-3, 2011, 52-54 : 875 - 880
  • [38] An experimental study of cell performance and pressure drop of proton exchange membrane fuel cells with baffled flow channels
    Chen, Hao
    Guo, Hang
    Ye, Fang
    Ma, Chong Fang
    JOURNAL OF POWER SOURCES, 2020, 472
  • [39] Scaleup effect on performance of proton exchange membrane fuel cell
    Leelasupakorn, Hong
    Kaewchada, Amaraporn
    Traisantikul, Watcharapon
    Tiengtrakarnsuk, Withawin
    Limtrakul, Sunun
    Vatanatham, Terdthai
    CHIANG MAI JOURNAL OF SCIENCE, 2008, 35 (01): : 89 - 94
  • [40] Experimental and numerical study on improvement performance by wave parallel flow field in a proton exchange membrane fuel cell
    Zijun Li
    Shubo Wang
    Sai Yao
    Xueke Wang
    Weiwei Li
    Tong Zhu
    Xiaofeng Xie
    ChineseJournalofChemicalEngineering, 2022, 45 (05) : 90 - 102