Effect of Y precursors on the synthesis of Cu-Y2O3 by mechanical alloying and spark plasma sintering

被引:0
作者
Xu, Jie [1 ]
Ma, Bing [1 ]
Luo, Laima [1 ,2 ]
Jiang, Feng [1 ]
Zhang, Yifan [1 ,2 ]
Wang, Jing [1 ,2 ]
Liu, Jiaqin [1 ,2 ]
Wu, Yucheng [1 ,2 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Engn Res Ctr High Performance Copper Alloy Mat & P, Minist Educ, Hefei 230009, Peoples R China
关键词
Mechanical alloying; Spark plasma sintering; Y salts; MICROSTRUCTURE; COMPOSITES; FABRICATION; CU;
D O I
10.1016/j.jnucmat.2024.155328
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work prepared the Cu-Y2O3 alloy through mechanical alloying and spark plasma sintering. Based on the insitu reaction principle, Y salts were used as a precursor of Y2O3 dispersoid instead of pure Y powder, and the influence of different Y salts on the microstructure, mechanical, and physical properties of the copper matrix was researched. The results indicate that Y salts can effectively prevent the cold welding effect of pure Y metal powder, thereby improving the homogeneity and refinement effect of alloying. Among different Y salts samples, Y(NO3)3 & sdot;6H2O and Y2(SO4)3 & sdot;8H2O may cause varying degrees of contamination to the copper matrix, affecting the material properties. In comparison, Y2(CO3)3 has the advantage of low decomposition temperature and the decomposition product CO2 does not react with the copper matrix. It successfully refined the average particle size of Y2O3 from 8.8 f 3.7 nm to 5.5 f 2.8 nm, increased the number density from 2.37 x 1021/m3 to 7.46 x 1021/ m3, and obtained a tensile strength of 291 MPa and an elongation of 19.8 % at room temperature, with a thermal conductivity of 322 W/(m K) at 400 degrees C for the Cu-Y2O3 alloy. This validates the feasibility of combining Y salts with mechanical alloying. The preparation of high-strength, high-conductivity Cu alloys holds significant reference value.
引用
收藏
页数:12
相关论文
共 36 条
[1]   Fabrication and characterization of Y2O3 dispersion strengthened copper alloys [J].
Carro, G. ;
Munoz, A. ;
Monge, M. A. ;
Savoini, B. ;
Pareja, R. ;
Ballesteros, C. ;
Adeva, P. .
JOURNAL OF NUCLEAR MATERIALS, 2014, 455 (1-3) :655-659
[2]   Microstructure and failure mechanism of Y2O3 coating on the W fiber in Wf/W composites during field assisted sintering [J].
Chen, C. ;
Chen, Y. ;
Han, X. ;
Li, K. L. ;
Wang, S. ;
Zhang, Y. F. ;
Mao, Y. R. ;
Coenen, J. W. ;
Wang, J. ;
Luo, L. M. .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 :8661-8670
[3]   Microstructure and properties of Y2O3/Cu composites fabricated by a novel liquid phase in situ reactive synthesis process [J].
Chen, Yanglian ;
Zhang, Xuehui ;
Huang, Fei ;
Song, Wenlong ;
Zou, Jinming ;
Yuan, Haixiang ;
Liu, Weijiang ;
Yang, Bin .
CERAMICS INTERNATIONAL, 2022, 48 (21) :31273-31280
[4]  
Deng G.F., 2019, J. Chin. Soc. Rare Earths, V350, P1
[5]   Kinetic parameters estimation of pinus sylvestris pyrolysis by Kissinger-Kai method coupled with Particle Swarm Optimization and global sensitivity analysis [J].
Ding, Yanming ;
Zhang, Yu ;
Zhang, Jiaqing ;
Zhou, Ru ;
Ren, Zeyu ;
Guo, Hailin .
BIORESOURCE TECHNOLOGY, 2019, 293
[6]   Theory of enhancement of thermoelectric properties of materials with nanoinclusions [J].
Faleev, Sergey V. ;
Leonard, Francois .
PHYSICAL REVIEW B, 2008, 77 (21)
[7]   In-situ fabrication of yttria dispersed copper alloys through MA-HIP process [J].
Huang, B. ;
Hishinuma, Y. ;
Noto, H. ;
Kasada, R. ;
Oono, N. ;
Ukai, S. ;
Muroga, T. .
NUCLEAR MATERIALS AND ENERGY, 2018, 16 :168-174
[8]   Uniformly dispersed Y2O3 nanoparticles in nanocrystalline copper matrix via multi-step ball milling and reduction process [J].
Huang, Fei ;
Wang, Hang ;
Yang, Bin ;
Liao, Tao ;
Wang, Zhaoyang .
MATERIALS LETTERS, 2019, 242 :119-122
[9]   Development of Y2O3 Dispersion-Strengthened Copper Alloy by Sol-Gel Method [J].
Ke, Jiangang ;
Xie, Zhuoming ;
Liu, Rui ;
Jing, Ke ;
Cheng, Xiang ;
Wang, Hui ;
Wang, Xianping ;
Wu, Xuebang ;
Fang, Qianfeng ;
Liu, Changsong .
MATERIALS, 2022, 15 (07)
[10]  
Konings RJM, 2012, COMPREHENSIVE NUCLEAR MATERIALS, VOL 2: MATERIAL PROPERTIES/OXIDE FUELS FOR LIGHT WATER REACTORS AND FAST NEUTRON REACTORS, P1