Global existence and blow-up of solutions for a class of p-biharmonic wave equations with damping terms and power sources

被引:0
作者
Yu, Fanbo [1 ]
Wu, Xiulan [1 ]
Zhao, Yaxin [1 ]
机构
[1] Changchun Univ Sci & Technol, Sch Math & Stat, Changchun, Peoples R China
基金
中国国家自然科学基金;
关键词
blow-up; damped terms; decay; p-biharmonic; wave equation; ASYMPTOTIC-BEHAVIOR; TIME; NONEXISTENCE;
D O I
10.1002/mma.10324
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of dampedp-biharmonictype wave equation with homogeneous Dirichlet boundary condition. First of all, we prove the local existence of weak solutions by Galerkin method. Besides, when the energy level is low E(0)<d, we prove the global existence, decay, and finite time blow-up of weak solutions through the method of potential well and the technique of differential inequalities. Finally, these results are extended in parallel to the critical case E(0)=d.
引用
收藏
页码:218 / 236
页数:19
相关论文
共 23 条
  • [1] Drabek P., 2001, J DIFFER EQUATIONS, V48, P19
  • [2] Global solutions and finite time blow up for damped semilinear wave equations
    Gazzola, F
    Squassina, M
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (02): : 185 - 207
  • [3] Górka P, 2009, ACTA PHYS POL B, V40, P59
  • [4] Droplet, spreading under weak slippage:: the waiting time phenomenon
    Grün, G
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (02): : 255 - 269
  • [5] Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy
    Han, Yuzhu
    Gao, Wenjie
    Sun, Zhe
    Li, Haixia
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (10) : 2477 - 2483
  • [6] Ladyzenskaja O., 1988, Linear and quasilinear equations of parabolic type, VVolume 23
  • [7] LARGE-AMPLITUDE PERIODIC OSCILLATIONS IN SUSPENSION BRIDGES - SOME NEW CONNECTIONS WITH NONLINEAR-ANALYSIS
    LAZER, AC
    MCKENNA, PJ
    [J]. SIAM REVIEW, 1990, 32 (04) : 537 - 578
  • [8] Global Solution and Blow-up for a Class of p-Laplacian Evolution Equations with Logarithmic Nonlinearity
    Le, Cong Nhan
    Xuan Truong Le
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2017, 151 (01) : 149 - 169
  • [9] Levandosky S. P., 2004, METHODS APPL ANAL, V11, P479
  • [10] Levine H. A., 1973, REMARKS GROWTH NONEX, P59