GPU-Accelerated BFS for Dynamic Networks

被引:0
|
作者
Ziche, Filippo [1 ]
Bombieri, Nicola [1 ]
Busato, Federico [1 ]
Giugno, Rosalba [1 ]
机构
[1] Univ Verona, Verona, Italy
来源
EURO-PAR 2024: PARALLEL PROCESSING, PT III, EURO-PAR 2024 | 2024年 / 14803卷
关键词
Breadth-First Search; GPU; Dynamic networks;
D O I
10.1007/978-3-031-69583-4_6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The breadth-first-search (BFS) algorithm serves as a fundamental building block for graph traversal with a wide range of applications, spanning from the electronic design automation (EDA) field to social network analysis. Many contemporary real-world networks are dynamic and evolve rapidly over time. In such cases, recomputing the BFS from scratch after each graph modification becomes impractical. While parallel solutions, particularly for GPUs, have been introduced to handle the size complexity of static networks, none have addressed the issue of work-efficiency in dynamic networks. In this paper, we propose a GPU-based BFS implementation capable of processing batches of network updates concurrently. Our solution leverages batch information to minimize the total workload required to update the BFS result while also enhancing data locality for future updates. We also introduce a technique for relabeling nodes, enhancing locality during dynamic BFS traversal. We present experimental results on a diverse set of large networks with varying characteristics and batch sizes.
引用
收藏
页码:74 / 87
页数:14
相关论文
共 50 条
  • [1] GPU-Accelerated Dynamic Graph Coloring
    Yang, Ying
    Gu, Yu
    Li, Chuanwen
    Wan, Changyi
    Yu, Ge
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2019, 11448 : 296 - 299
  • [2] GPU-Accelerated CNN Inference for Onboard DQN-Based Routing in Dynamic LEO Satellite Networks
    Yu, Changgeun
    Kim, Daeyeon
    Lee, Heoncheol
    Han, Myonghun
    AEROSPACE, 2024, 11 (12)
  • [3] PacketShader: A GPU-Accelerated Software Router
    Han, Sangjin
    Jang, Keon
    Park, KyoungSoo
    Moon, Sue
    ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2010, 40 (04) : 195 - 206
  • [4] GPU-accelerated computation of electron transfer
    Hoefinger, Siegfried
    Acocella, Angela
    Pop, Sergiu C.
    Narumi, Tetsu
    Yasuoka, Kenji
    Beu, Titus
    Zerbetto, Francesco
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2012, 33 (29) : 2351 - 2356
  • [5] GPU-Accelerated Algorithm for Polygon Reconstruction
    Ji, Ruian
    Niu, Zhirui
    Chen, Lan
    APPLIED SCIENCES-BASEL, 2025, 15 (03):
  • [6] GPU-accelerated molecular mechanics computations
    Anthopoulos, Athanasios
    Grimstead, Ian
    Brancale, Andrea
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2013, 34 (26) : 2249 - 2260
  • [7] GPU-accelerated DEM implementation with CUDA
    Qi, Ji
    Li, Kuan-Ching
    Jiang, Hai
    Zhou, Qingguo
    Yang, Lei
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2015, 11 (03) : 330 - 337
  • [8] GPU-Accelerated Finite Element Method
    Dziekonski, Adam
    Lamecki, Adam
    Mrozowski, Michal
    2016 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO), 2016,
  • [9] GPU-accelerated Preconditioned GMRES Solver
    Yang, Bo
    Liu, Hui
    Chen, Zhangxin
    Tian, Xuhong
    2016 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA SECURITY ON CLOUD (BIGDATASECURITY), IEEE INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING (HPSC), AND IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA AND SECURITY (IDS), 2016, : 280 - 285
  • [10] GPUNFV: a GPU-Accelerated NFV System
    Yi, Xiaodong
    Duan, Jingpu
    Wu, Chuan
    PROCEEDINGS OF THE 2017 ASIA-PACIFIC WORKSHOP ON NETWORKING (APNET '17), 2017, : 85 - 91