Physics-informed neural networks for multi-stage Koopman modeling of microbial fermentation

被引:1
|
作者
Li, Quan [1 ]
Zhang, Jingran [1 ]
Wan, Haiying [1 ]
Zhao, Zhonggai [1 ]
Liu, Fei [1 ]
机构
[1] Jiangnan Univ, Minist Educ, Key Lab Adv Proc Control Light Ind, Inst Automat, Wuxi 214122, Peoples R China
关键词
Microbial fermentation; Growth stages; Multi-stage Koopman modeling; Fuzzy C-means clustering; Physics-informed neural networks; DATA-DRIVEN CONTROL; KINETIC-MODEL; OPERATOR; EQUATION; SYSTEMS;
D O I
10.1016/j.jprocont.2024.103315
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the modeling problem of microbial fermentation suitable for model-based control design techniques. Given the evident nonlinear and stage characteristics of microbial fermentation processes, a single data-driven model cannot fully capture microbial growth characteristics. Therefore, we propose a multi-stage Koopman modeling method based on physics-informed neural networks. Initially, the fuzzy C-means clustering algorithm is employed to partition the microbial growth stages. Subsequently, the Koopman operator is approximated through physics-informed neural networks. Utilizing the Koopman operator to map the dynamic behavior of the microbial fermentation system into a high-dimensional linear space, and modeling each growth stage separately in the linear space. Compared to conventional neural network methods, physics-informed neural networks integrate the advantages of physical models and neural networks, thereby better preserving the dynamic information of microbial growth and enhancing the model's generalization performance. A penicillin fermentation case study verifies the effectiveness of our proposed method.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] PHYSICS-INFORMED NEURAL NETWORKS FOR MODELING LINEAR WAVES
    Sheikholeslami, Mohammad
    Salehi, Saeed
    Mao, Wengang
    Eslamdoost, Arash
    Nilsson, Hakan
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 9, 2024,
  • [2] Multifidelity modeling for Physics-Informed Neural Networks (PINNs)
    Penwarden, Michael
    Zhe, Shandian
    Narayan, Akil
    Kirby, Robert M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 451
  • [3] Physics-informed neural networks for modeling astrophysical shocks
    Moschou, S. P.
    Hicks, E.
    Parekh, R. Y.
    Mathew, D.
    Majumdar, S.
    Vlahakis, N.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (03):
  • [4] Physics-Informed Neural Networks with skip connections for modeling and
    Kittelsen, Jonas Ekeland
    Antonelo, Eric Aislan
    Camponogara, Eduardo
    Imsland, Lars Struen
    APPLIED SOFT COMPUTING, 2024, 158
  • [5] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    HELIYON, 2023, 9 (08)
  • [6] Error homogenization in physics-informed neural networks for modeling in manufacturing
    Cooper, Clayton
    Zhang, Jianjing
    Gao, Robert X.
    JOURNAL OF MANUFACTURING SYSTEMS, 2023, 71 : 298 - 308
  • [7] Physics-informed neural networks for the Reynolds equation with cavitation modeling
    Rom, Michael
    TRIBOLOGY INTERNATIONAL, 2023, 179
  • [8] On the Application of Physics-Informed Neural Networks in the Modeling of Roll Waves
    Martins da Silva, Bruno Fagherazzi
    Rocho, Valdirene da Rosa
    Dorn, Marcio
    Fiorot, Guilherme Henrique
    ADVANCES IN HYDROINFORMATICS, VOL 2, SIMHYDRO 2023, 2024, : 89 - 106
  • [9] Physics-informed neural networks for modeling atmospheric radiative transfer
    Zucker, Shai
    Batenkov, Dmitry
    Rozenhaimer, Michal Segal
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2025, 331
  • [10] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    ENTROPY, 2024, 26 (08)