Monocular 3D object detection for distant objects

被引:0
|
作者
Li, Jiahao [1 ]
Han, Xiaohong [1 ]
机构
[1] Taiyuan Univ Technol, Coll Comp Sci & Technol Coll Data Sci, Taiyuan, Peoples R China
关键词
autonomous driving; computer vision; monocular three-dimensional object detection;
D O I
10.1117/1.JEI.33.3.033021
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
. Autonomous driving represents the future of transportation, and the precise detection of three-dimensional (3D) objects is a fundamental requirement for achieving autonomous driving capabilities. Presently, 3D object detection primarily relies on sensors, such as monocular cameras, stereo cameras, and LiDAR technology. In comparison to stereo cameras and LiDAR, monocular 3D object detection offers the advantages of a wider field of view and reduced cost. However, the existing monocular 3D object detection techniques exhibit limitations in terms of accuracy, particularly when detecting distant objects. To tackle this challenge, we introduce an innovative approach for monocular 3D object detection, specifically tailored for distant objects. The proposed method classifies objects into distant and nearby categories based on the initial depth estimation, employing distinct feature enhancement and refinement modules for each category. Subsequently, it extracts 3D features and, ultimately, derives precise 3D detection bounding boxes. Experimental results using the KITTI dataset demonstrate that this approach substantially enhances the detection accuracy of distant objects while preserving the detection efficacy for nearby objects.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Deep Learning-Based Monocular 3D Object Detection with Refinement of Depth Information
    Hu, Henan
    Zhu, Ming
    Li, Muyu
    Chan, Kwok-Leung
    SENSORS, 2022, 22 (07)
  • [22] Disentangling Monocular 3D Object Detection: From Single to Multi-Class Recognition
    Simonelli, Andrea
    Bulo, Samuel Rota
    Porzi, Lorenzo
    Antequera, Manuel Lopez
    Kontschieder, Peter
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (03) : 1219 - 1231
  • [23] Monocular 3D Object Detection From Comprehensive Feature Distillation Pseudo-LiDAR
    Sun, Chentao
    Xu, Chengrui
    Fang, Wenxiao
    Xu, Kunyuan
    IEEE ACCESS, 2023, 11 : 98969 - 98976
  • [24] MDS-Net: Multi-Scale Depth Stratification 3D Object Detection from Monocular Images
    Xie, Zhouzhen
    Song, Yuying
    Wu, Jingxuan
    Li, Zecheng
    Song, Chunyi
    Xu, Zhiwei
    SENSORS, 2022, 22 (16)
  • [25] 3D-Net: Monocular 3D object recognition for traffic monitoring
    Rezaei, Mahdi
    Azarmi, Mohsen
    Mir, Farzam Mohammad Pour
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 227
  • [26] A survey of 3D object detection
    Wei Liang
    Pengfei Xu
    Ling Guo
    Heng Bai
    Yang Zhou
    Feng Chen
    Multimedia Tools and Applications, 2021, 80 : 29617 - 29641
  • [27] M3DGAF: Monocular 3D Object Detection With Geometric Appearance Awareness and Feature Fusion
    Chen, Mu
    Liu, Pengfei
    Zhao, Huaici
    IEEE SENSORS JOURNAL, 2023, 23 (11) : 11232 - 11240
  • [28] A survey of 3D object detection
    Liang, Wei
    Xu, Pengfei
    Guo, Ling
    Bai, Heng
    Zhou, Yang
    Chen, Feng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (19) : 29617 - 29641
  • [29] Multi-Scale Enhanced Depth Knowledge Distillation for Monocular 3D Object Detection with SEFormer
    Zhang, Han
    Li, Jun
    Tang, Rui
    Shi, Zhiping
    Bu, Aojie
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 38 - 43
  • [30] Depth-Enhanced Deep Learning Approach For Monocular Camera Based 3D Object Detection
    Wang, Chuyao
    Aouf, Nabil
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2024, 110 (03)