Exploring raw material contributions to the greenhouse gas emissions of lithium-ion battery production

被引:4
作者
Manjong, Nelson Bunyui [1 ]
Usai, Lorenzo [1 ]
Orangi, Sina [1 ]
Clos, Daniel Perez [1 ]
Stromman, Anders Hammer [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Energy & Proc Engn, Ind Ecol Program, N-7491 Trondheim, Norway
关键词
Battery raw materials; Battery cell manufacturing; Parametric life cycle assessment; Greenhouse gas emissions; Footprint variability; HIGH-ENERGY-DENSITY; ENVIRONMENTAL-IMPACT; OPTIMIZATION;
D O I
10.1016/j.est.2024.113566
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Battery manufacturers aim to minimize greenhouse gas (GHG) emissions from producing lithium-ion battery (LIB) cells. Meeting these ambitions necessitates understanding how different factors throughout the value chain impact the GHG emissions from producing a LIB cell. In this article, we use a parametric process-based life cycle assessment (LCA) model to explore how the GHG emissions of lithium iron phosphate (LFP) and nickel manganese cobalt (NMC811) cells could potentially vary due to changes in the raw material supply parameters. The average global reference GHG emissions for producing 1 kWh functional unit of cell capacity is estimated in our model at 107 kgCO2e for LFP and 94 kgCO2e for NMC811. This paper further evaluates GHG emissions for cell manufacturing in Norway, Germany, and China, using global average conditions for raw material supply. In addition to the reference GHG estimates, thirty LCA scenarios are performed using a parameterization of raw material conditions. These scenarios involved changing ore grades, technology routes in mineral processing, material recovery efficiency, and the carbon intensity of the electricity mix for raw material processing. A global average mix, a Norwegian, German, and Chinese electricity mix are used for cell manufacturing. Based on specific ranges of raw material parameters, our estimation suggests that the theoretical emission ranges for LFP could be 27-64 kgCO2e/kWh for Norway, 60-98 kgCO2e/kWh for Germany, and 90-127 kgCO2e/kWh for China. For NMC811, the theoretical emissions range from 27 - 111 kgCO2e/kWh for Norway, 51-134 kgCO2e/kWh for Germany, and 71-155 kgCO2e/kWh for China. This work highlights the impact of raw supply chain conditions on the overall GHG emissions of Li-ion battery cells.
引用
收藏
页数:15
相关论文
共 81 条
[1]   A design process model for battery systems based on existing life cycle assessment results [J].
Akasapu, U. ;
Hehenberger, P. .
JOURNAL OF CLEANER PRODUCTION, 2023, 407
[2]  
[Anonymous], 2021, MINERAL COMMODITY SU, DOI DOI 10.3133/MCS2021
[3]  
B. Minerals, 2023, Understanding emissions of lithium ion's two mainstream chemistries NCM & LFP: new data
[4]   Charging sustainable batteries comment [J].
Bauer, Christian ;
Burkhardt, Simon ;
Dasgupta, Neil P. ;
Ellingsen, Linda Ager-Wick ;
Gaines, Linda L. ;
Hao, Han ;
Hischier, Roland ;
Hu, Liangbing ;
Huang, Yunhui ;
Janek, Juergen ;
Liang, Chengdu ;
Li, Hong ;
Li, Ju ;
Li, Yangxing ;
Lu, Yi-Chun ;
Luo, Wei ;
Nazar, Linda F. ;
Olivetti, Elsa A. ;
Peters, Jens F. ;
Rupp, Jennifer L. M. ;
Weil, Marcel ;
Whitacre, Jay F. ;
Xu, Shengming .
NATURE SUSTAINABILITY, 2022, 5 (03) :176-178
[5]  
Boonzaier S., 2020, LIFE CYCLE ASSESSMEN
[6]   Structured aqueous processed lignin-based NMC cathodes for energy-dense LIBs with improved rate capability [J].
Bryntesen, Silje Nornes ;
Finne, Per Hakon ;
Svensson, Ann Mari ;
Shearing, Paul R. R. ;
Tolstik, Nikolai ;
Sorokina, Irina T. T. ;
Vinje, Jakob ;
Lamb, Jacob Joseph ;
Burheim, Odne Stokke .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (12) :6483-6502
[7]   A mechanically robust self-healing binder for silicon anode in lithium ion batteries [J].
Chen, Hao ;
Wu, Zhenzhen ;
Su, Zhong ;
Chen, Su ;
Yan, Cheng ;
Al-Mamun, Mohammad ;
Tang, Yongbing ;
Zhang, Shanqing .
NANO ENERGY, 2021, 81
[8]   Recent Progress and Perspective of Advanced High-Energy Co-Less Ni-Rich Cathodes for Li-Ion Batteries: Yesterday, Today, and Tomorrow [J].
Choi, Ji Ung ;
Voronina, Natalia ;
Sun, Yang-Kook ;
Myung, Seung-Taek .
ADVANCED ENERGY MATERIALS, 2020, 10 (42)
[9]   Environmental life cycle implications of upscaling lithium-ion battery production [J].
Chordia, Mudit ;
Nordelof, Anders ;
Ellingsen, Linda Ager-Wick .
INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2021, 26 (10) :2024-2039
[10]   Towards more flexibility and transparency in life cycle inventories for Lithium-ion batteries [J].
Crenna, Eleonora ;
Gauch, Marcel ;
Widmer, Rolf ;
Waeger, Patrick ;
Hischier, Roland .
RESOURCES CONSERVATION AND RECYCLING, 2021, 170