Generating Daily High-Resolution Regional XCO2 by Deep Neural Network and Multi-Source Data

被引:0
作者
Tian, Wenjie [1 ,2 ]
Zhang, Lili [1 ,2 ,3 ]
Yu, Tao [1 ,2 ]
Yao, Dong [4 ]
Zhang, Wenhao [5 ]
Wang, Chunmei [2 ]
机构
[1] Hainan Aerosp Informat Res Inst, Key Lab Earth Observat Hainan Prov, Sanya 572029, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[3] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
[4] QiLu Aerosp Informat Res Inst, Jinan 250010, Peoples R China
[5] North China Inst Aerosp Engn, Langfang 065000, Peoples R China
关键词
DNN; XCO2; China; regional fine scale; high resolution; INDUCED CHLOROPHYLL FLUORESCENCE; CARBON; RETRIEVAL; CO2; EMISSIONS; TCCON; OCO-2;
D O I
10.3390/atmos15080985
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
CO2 is one of the primary greenhouse gases impacting global climate change, making it crucial to understand the spatiotemporal variations of CO2. Currently, commonly used satellites serve as the primary means of CO2 observation, but they often suffer from striping issues and fail to achieve complete coverage. This paper proposes a method for constructing a comprehensive high-spatiotemporal-resolution XCO2 dataset based on multiple auxiliary data sources and satellite observations, utilizing multiple simple deep neural network (DNN) models. Global validation results against ground-based TCCON data demonstrate the excellent accuracy of the constructed XCO2 dataset (R is 0.94, RMSE is 0.98 ppm). Using this method, we analyze the spatiotemporal variations of CO2 in China and its surroundings (region: 0 degrees-60 degrees N, 70 degrees-140 degrees E) from 2019 to 2020. The gapless and fine-scale CO2 generation method enhances people's understanding of CO2 spatiotemporal variations, supporting carbon-related research.
引用
收藏
页数:17
相关论文
共 49 条
[31]   Monitoring greenhouse gases (GHGs) in China: status and perspective [J].
Sun, Youwen ;
Yin, Hao ;
Wang, Wei ;
Shan, Changgong ;
Notholt, Justus ;
Palm, Mathias ;
Liu, Ke ;
Chen, Zhenyi ;
Liu, Cheng .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2022, 15 (16) :4819-4834
[32]  
Tarasova O., 2023, The State of Greenhouse Gases in the Atmosphere Using Global Observations through 2021
[33]   OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals [J].
Taylor, Thomas E. ;
Eldering, Annmarie ;
Merrelli, Aronne ;
Kiel, Matthaeus ;
Somkuti, Peter ;
Cheng, Cecilia ;
Rosenberg, Robert ;
Fisher, Brendan ;
Crisp, David ;
Basilio, Ralph ;
Bennett, Matthew ;
Cervantes, Daniel ;
Chang, Albert ;
Dang, Lan ;
Frankenberg, Christian ;
Haemmerle, Vance R. ;
Keller, Graziela R. ;
Kurosu, Thomas ;
Laughner, Joshua L. ;
Lee, Richard ;
Marchetti, Yuliya ;
Nelson, Robert R. ;
O'Dell, Christopher W. ;
Osterman, Gregory ;
Pavlick, Ryan ;
Roehl, Coleen ;
Schneider, Robert ;
Spiers, Gary ;
To, Cathy ;
Wells, Christopher ;
Wennberg, Paul O. ;
Yelamanchili, Amruta ;
Yu, Shanshan .
REMOTE SENSING OF ENVIRONMENT, 2020, 251
[34]   Net-zero emission targets for major emitting countries consistent with the Paris Agreement [J].
van Soest, Heleen L. ;
den Elzen, Michel G. J. ;
van Vuuren, Detlef P. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[35]   Driving forces of China's provincial bilateral carbon emissions and the re-definition of corresponding responsibilities [J].
Wang, Wenzhi ;
Hu, Yong ;
Lu, You .
SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 857
[36]   Systematics of atmospheric environment monitoring in China via satellite remote sensing [J].
Wang, Zhongting ;
Ma, Pengfei ;
Zhang, Lijuan ;
Chen, Hui ;
Zhao, Shaohua ;
Zhou, Wei ;
Chen, Cuihong ;
Zhang, Yuhuan ;
Zhou, Chunyan ;
Mao, Huiqin ;
Wang, Yu ;
Wang, Yanlong ;
Zhang, Lianhua ;
Zhao, Aimei ;
Weng, Guoqing ;
Hu, Kuiwei .
AIR QUALITY ATMOSPHERE AND HEALTH, 2021, 14 (02) :157-169
[37]   Temporal characteristics of greenhouse gases (CO2 and CH4) in the megacity Shanghai, China: Association with air pollutants and meteorological conditions [J].
Wei, Chong ;
Wang, Maohua ;
Fu, Qingyan ;
Dai, Cheng ;
Huang, Rong ;
Bao, Quan .
ATMOSPHERIC RESEARCH, 2020, 235
[38]   Moving forward after the COVID-19 pandemic: Lessons learned in primary care from the multi-country PRICOV-19 study [J].
Willems, Sara ;
Vanden Bussche, Pierre ;
Van Poel, Esther ;
Collins, Claire ;
Klemenc-Ketis, Zalika .
EUROPEAN JOURNAL OF GENERAL PRACTICE, 2024, 30 (01)
[39]   Reconstructing annual XCO2 at a 1 km x 1 km spatial resolution across China from 2012 to 2019 based on a spatial CatBoost method [J].
Wu, Chao ;
Ju, Yuechuang ;
Yang, Shuo ;
Zhang, Zhenwei ;
Chen, Yixiang .
ENVIRONMENTAL RESEARCH, 2023, 236
[40]   Surface ocean CO2 in 1990-2011 modelled using a feed-forward neural network [J].
Zeng, Jiye ;
Nojiri, Yukihiro ;
Nakaoka, Shin-ichiro ;
Nakajima, Hideaki ;
Shirai, Tomoko .
GEOSCIENCE DATA JOURNAL, 2015, 2 (01) :47-51