Generating Daily High-Resolution Regional XCO2 by Deep Neural Network and Multi-Source Data

被引:0
作者
Tian, Wenjie [1 ,2 ]
Zhang, Lili [1 ,2 ,3 ]
Yu, Tao [1 ,2 ]
Yao, Dong [4 ]
Zhang, Wenhao [5 ]
Wang, Chunmei [2 ]
机构
[1] Hainan Aerosp Informat Res Inst, Key Lab Earth Observat Hainan Prov, Sanya 572029, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[3] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
[4] QiLu Aerosp Informat Res Inst, Jinan 250010, Peoples R China
[5] North China Inst Aerosp Engn, Langfang 065000, Peoples R China
关键词
DNN; XCO2; China; regional fine scale; high resolution; INDUCED CHLOROPHYLL FLUORESCENCE; CARBON; RETRIEVAL; CO2; EMISSIONS; TCCON; OCO-2;
D O I
10.3390/atmos15080985
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
CO2 is one of the primary greenhouse gases impacting global climate change, making it crucial to understand the spatiotemporal variations of CO2. Currently, commonly used satellites serve as the primary means of CO2 observation, but they often suffer from striping issues and fail to achieve complete coverage. This paper proposes a method for constructing a comprehensive high-spatiotemporal-resolution XCO2 dataset based on multiple auxiliary data sources and satellite observations, utilizing multiple simple deep neural network (DNN) models. Global validation results against ground-based TCCON data demonstrate the excellent accuracy of the constructed XCO2 dataset (R is 0.94, RMSE is 0.98 ppm). Using this method, we analyze the spatiotemporal variations of CO2 in China and its surroundings (region: 0 degrees-60 degrees N, 70 degrees-140 degrees E) from 2019 to 2020. The gapless and fine-scale CO2 generation method enhances people's understanding of CO2 spatiotemporal variations, supporting carbon-related research.
引用
收藏
页数:17
相关论文
共 49 条
[1]   Estimation of global GPP from GOME-2 and OCO-2 SIF by considering the dynamic variations of GPP-SIF relationship [J].
Bai, Jia ;
Zhang, Helin ;
Sun, Rui ;
Li, Xing ;
Xiao, Jingfeng ;
Wang, Yan .
AGRICULTURAL AND FOREST METEOROLOGY, 2022, 326
[2]  
Bhattacharjee S., 2020, P 2020 IEEE INT C EL, P1
[3]   Space-based near-infrared CO2 measurements:: Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin [J].
Boesch, H. ;
Toon, G. C. ;
Sen, B. ;
Washenfelder, R. A. ;
Wennberg, P. O. ;
Buchwitz, M. ;
de Beek, R. ;
Burrows, J. P. ;
Crisp, D. ;
Christi, M. ;
Connor, B. J. ;
Natraj, V. ;
Yung, Y. L. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D23)
[4]   Evaluation of Regional CO2 Mole Fractions in the ECMWF CAMS Real-Time Atmospheric Analysis and NOAA CarbonTracker Near-Real-Time Reanalysis With Airborne Observations From ACT-America Field Campaigns [J].
Chen, Hans W. ;
Zhang, Lily N. ;
Zhang, Fuqing ;
Davis, Kenneth J. ;
Lauvaux, Thomas ;
Pal, Sandip ;
Gaudet, Brian ;
DiGangi, Joshua P. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (14) :8119-8133
[5]   Characterizing the regional XCO2 variability and its association with ENSO over India inferred from GOSAT and OCO-2 satellite observations [J].
Das, Chiranjit ;
Kunchala, Ravi Kumar ;
Chandra, Naveen ;
Chhabra, Abha ;
Pandya, Mehul R. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 902
[6]   Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite [J].
Du, Shanshan ;
Liu, Liangyun ;
Liu, Xinjie ;
Zhang, Xiao ;
Zhang, Xingying ;
Bi, Yanmeng ;
Zhang, Lianchong .
SCIENCE BULLETIN, 2018, 63 (22) :1502-1512
[7]   Carbon emission efficiency of China's industry sectors: From the perspective of embodied carbon emissions [J].
Gao, Peng ;
Yue, Shujing ;
Chen, Hongtao .
JOURNAL OF CLEANER PRODUCTION, 2021, 283
[8]   Data-driven carbon emission accounting for manufacturing systems based on meta-carbon-emission block [J].
Ge, Weiwei ;
Cao, Huajun ;
Li, Hongcheng ;
Zhang, Qiongzhi ;
Wen, Xuanhao ;
Zhang, Chaoyong ;
Mativenga, Paul .
JOURNAL OF MANUFACTURING SYSTEMS, 2024, 74 :141-156
[9]   Satellite (GOSAT-2 CAI-2) retrieval and surface (ARFINET) observations of aerosol black carbon over India [J].
Gogoi, Mukunda M. ;
Babu, S. Suresh ;
Imasu, Ryoichi ;
Hashimoto, Makiko .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2023, 23 (14) :8059-8079
[10]   Copernicus Atmosphere Monitoring Service TEMPOral profiles (CAMS-TEMPO): global and European emission temporal profile maps for atmospheric chemistry modelling [J].
Guevara, Marc ;
Jorba, Oriol ;
Tena, Carles ;
van der Gon, Hugo Denier ;
Kuenen, Jeroen ;
Elguindi, Nellie ;
Darras, Sabine ;
Granier, Claire ;
Perez Garcia-Pando, Carlos .
EARTH SYSTEM SCIENCE DATA, 2021, 13 (02) :367-404