Maximizing Minimum Cycle Bases Intersection

被引:0
|
作者
Aboulfath, Ylene [1 ]
Wate, Dimitri [2 ,3 ]
Weisser, Marc-Antoine [4 ]
Mautor, Thierry [1 ]
Barth, Dominique [1 ]
机构
[1] Univ Versailles St Quentin En Yvelines, DAVID, Versailles, France
[2] SAMOVAR, Evry, France
[3] ENSIIE, Evry, France
[4] CentraleSupelec, LISN, Gif Sur Yvette, France
来源
COMBINATORIAL ALGORITHMS, IWOCA 2024 | 2024年 / 14764卷
关键词
Minimum cycle basis; Matroids intersection problem; Complexity;
D O I
10.1007/978-3-031-63021-7_5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We address a specific case of the matroid intersection problem: given a set of graphs sharing the same set of vertices, select a minimum cycle basis for each graph to maximize the size of their intersection. We provide a comprehensive complexity analysis of this problem, which finds applications in chemoinformatics. We establish a complete partition of subcases based on intrinsic parameters: the number of graphs, the maximum degree of the graphs, and the size of the longest cycle in the minimum cycle bases. Additionally, we present results concerning the approximability and parameterized complexity of the problem.
引用
收藏
页码:55 / 68
页数:14
相关论文
共 15 条
  • [1] Minimum cycle bases of Halin graphs
    Stadler, PF
    JOURNAL OF GRAPH THEORY, 2003, 43 (02) : 150 - 155
  • [2] Minimum Cycle Bases for Network Graphs
    Franziska Berger
    Peter Gritzmann
    Sven de Vries
    Algorithmica , 2004, 40 : 51 - 62
  • [3] Minimum cycle bases for network graphs
    Berger, F
    Gritzmann, P
    de Vries, S
    ALGORITHMICA, 2004, 40 (01) : 51 - 62
  • [4] Minimum Cycle Bases: Faster and Simpler
    Mehlhorn, Kurt
    Michail, Dimitrios
    ACM TRANSACTIONS ON ALGORITHMS, 2009, 6 (01)
  • [5] Minimum cycle bases of weighted outerplanar graphs
    Liu, Tsung-Hao
    Lu, Hsueh-I
    INFORMATION PROCESSING LETTERS, 2010, 110 (21) : 970 - 974
  • [6] Minimum cycle bases of direct products of complete graphs
    Hammack, Richard
    INFORMATION PROCESSING LETTERS, 2007, 102 (05) : 214 - 218
  • [7] Minimum path bases and relevant paths
    Gleiss, PM
    Leydold, J
    Stadler, PF
    NETWORKS, 2005, 46 (03) : 119 - 123
  • [8] On Minimum Reload Cost Cycle Cover
    Galbiati, Giulia
    Gualandi, Stefano
    Maffioli, Francesco
    DISCRETE APPLIED MATHEMATICS, 2014, 164 : 112 - 120
  • [9] On the complexity of finding a minimum cycle cover of a graph
    Thomassen, C
    SIAM JOURNAL ON COMPUTING, 1997, 26 (03) : 675 - 677
  • [10] On the approximability of the minimum strictly fundamental cycle basis problem
    Galbiati, Giulia
    Rizzi, Romeo
    Amaldi, Edoardo
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (04) : 187 - 200