共 50 条
Gene-level alignment of single-cell trajectories
被引:3
|作者:
Sumanaweera, Dinithi
[1
,2
,3
]
Suo, Chenqu
[1
,2
,4
]
Cujba, Ana-Maria
[1
,2
]
Muraro, Daniele
[1
,2
]
Dann, Emma
[1
,2
]
Polanski, Krzysztof
[1
,2
]
Steemers, Alexander S.
[1
,2
,5
]
Lee, Woochan
[1
,2
,6
]
Oliver, Amanda J.
[1
,2
]
Park, Jong-Eun
[1
,2
,7
]
Meyer, Kerstin B.
[1
,2
]
Dumitrascu, Bianca
[8
,9
]
Teichmann, Sarah A.
[1
,2
,10
,11
,12
]
机构:
[1] Wellcome Sanger Inst, Cambridge, England
[2] Wellcome Genome Campus, Cambridge, England
[3] Univ Cambridge, Dept Phys, Cavendish Lab, Theory Condensed Matter, Cambridge, England
[4] Cambridge Univ Hosp, Dept Paediat, Hills Rd, Cambridge, England
[5] Princess Maxima Ctr Pediat Oncol, Utrecht, Netherlands
[6] Seoul Natl Univ, Dept Biomed Sci, Seoul, South Korea
[7] Korea Adv Inst Sci & Technol KAIST, Grad Sch Med Sci & Engn, Daejeon, South Korea
[8] Columbia Univ, Dept Stat, New York, NY USA
[9] Columbia Univ, Irving Inst Canc Dynam, New York, NY USA
[10] Univ Cambridge, Cambridge Stem Cell Inst, Jeffrey Cheah Biomed Ctr, Cambridge Biomed Campus, Cambridge, England
[11] Univ Cambridge, Dept Med, Cambridge, England
[12] CIFAR Macmillan Res Program, Toronto, ON, Canada
基金:
英国医学研究理事会;
英国惠康基金;
关键词:
FINITE-STATE MODELS;
HEMATOPOIESIS;
INFERENCE;
D O I:
10.1038/s41592-024-02378-4
中图分类号:
Q5 [生物化学];
学科分类号:
071010 ;
081704 ;
摘要:
Single-cell data analysis can infer dynamic changes in cell populations, for example across time, space or in response to perturbation, thus deriving pseudotime trajectories. Current approaches comparing trajectories often use dynamic programming but are limited by assumptions such as the existence of a definitive match. Here we describe Genes2Genes, a Bayesian information-theoretic dynamic programming framework for aligning single-cell trajectories. It is able to capture sequential matches and mismatches of individual genes between a reference and query trajectory, highlighting distinct clusters of alignment patterns. Across both real world and simulated datasets, it accurately inferred alignments and demonstrated its utility in disease cell-state trajectory analysis. In a proof-of-concept application, Genes2Genes revealed that T cells differentiated in vitro match an immature in vivo state while lacking expression of genes associated with TNF signaling. This demonstrates that precise trajectory alignment can pinpoint divergence from the in vivo system, thus guiding the optimization of in vitro culture conditions. Genes2Genes is a dynamic programming framework that enables precise alignment for single-cell trajectories at the per-gene level.
引用
收藏
页码:68 / 81
页数:44
相关论文