Gene-level alignment of single-cell trajectories

被引:3
|
作者
Sumanaweera, Dinithi [1 ,2 ,3 ]
Suo, Chenqu [1 ,2 ,4 ]
Cujba, Ana-Maria [1 ,2 ]
Muraro, Daniele [1 ,2 ]
Dann, Emma [1 ,2 ]
Polanski, Krzysztof [1 ,2 ]
Steemers, Alexander S. [1 ,2 ,5 ]
Lee, Woochan [1 ,2 ,6 ]
Oliver, Amanda J. [1 ,2 ]
Park, Jong-Eun [1 ,2 ,7 ]
Meyer, Kerstin B. [1 ,2 ]
Dumitrascu, Bianca [8 ,9 ]
Teichmann, Sarah A. [1 ,2 ,10 ,11 ,12 ]
机构
[1] Wellcome Sanger Inst, Cambridge, England
[2] Wellcome Genome Campus, Cambridge, England
[3] Univ Cambridge, Dept Phys, Cavendish Lab, Theory Condensed Matter, Cambridge, England
[4] Cambridge Univ Hosp, Dept Paediat, Hills Rd, Cambridge, England
[5] Princess Maxima Ctr Pediat Oncol, Utrecht, Netherlands
[6] Seoul Natl Univ, Dept Biomed Sci, Seoul, South Korea
[7] Korea Adv Inst Sci & Technol KAIST, Grad Sch Med Sci & Engn, Daejeon, South Korea
[8] Columbia Univ, Dept Stat, New York, NY USA
[9] Columbia Univ, Irving Inst Canc Dynam, New York, NY USA
[10] Univ Cambridge, Cambridge Stem Cell Inst, Jeffrey Cheah Biomed Ctr, Cambridge Biomed Campus, Cambridge, England
[11] Univ Cambridge, Dept Med, Cambridge, England
[12] CIFAR Macmillan Res Program, Toronto, ON, Canada
基金
英国医学研究理事会; 英国惠康基金;
关键词
FINITE-STATE MODELS; HEMATOPOIESIS; INFERENCE;
D O I
10.1038/s41592-024-02378-4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell data analysis can infer dynamic changes in cell populations, for example across time, space or in response to perturbation, thus deriving pseudotime trajectories. Current approaches comparing trajectories often use dynamic programming but are limited by assumptions such as the existence of a definitive match. Here we describe Genes2Genes, a Bayesian information-theoretic dynamic programming framework for aligning single-cell trajectories. It is able to capture sequential matches and mismatches of individual genes between a reference and query trajectory, highlighting distinct clusters of alignment patterns. Across both real world and simulated datasets, it accurately inferred alignments and demonstrated its utility in disease cell-state trajectory analysis. In a proof-of-concept application, Genes2Genes revealed that T cells differentiated in vitro match an immature in vivo state while lacking expression of genes associated with TNF signaling. This demonstrates that precise trajectory alignment can pinpoint divergence from the in vivo system, thus guiding the optimization of in vitro culture conditions. Genes2Genes is a dynamic programming framework that enables precise alignment for single-cell trajectories at the per-gene level.
引用
收藏
页码:68 / 81
页数:44
相关论文
共 50 条
  • [1] Alignment of single-cell trajectories to compare cellular expression dynamics
    Alpert, Ayelet
    Moore, Lindsay S.
    Dubovik, Tania
    Shen-Orr, Shai S.
    NATURE METHODS, 2018, 15 (04) : 267 - +
  • [2] Alignment of single-cell trajectories to compare cellular expression dynamics
    Alpert A.
    Moore L.S.
    Dubovik T.
    Shen-Orr S.S.
    Nature Methods, 2018, 15 (4) : 267 - 270
  • [3] Gene regulation at the single-cell level
    Rosenfeld, N
    Young, JW
    Alon, U
    Swain, PS
    Elowitz, MB
    SCIENCE, 2005, 307 (5717) : 1962 - 1965
  • [4] SDImpute: A statistical block imputation method based on cell-level and gene-level information for dropouts in single-cell RNA-seq data
    Qi, Jing
    Zhou, Yang
    Zhao, Zicen
    Jin, Shuilin
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (06)
  • [6] Gene-expression analysis at the single-cell level
    Dixon, AK
    Richardsen, PJ
    Pinnock, RD
    Lee, K
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2000, 21 (02) : 65 - 70
  • [7] EMBRYOLOGY AT THE SINGLE-CELL LEVEL: GENE EXPRESSION, LINEAGE, AND CELL IDENTITY
    Linnarsson, Sten
    IFPT'6: PROGRESS ON POST-GENOME TECHNOLOGIES, PROCEEDINGS, 2009, : 15 - 15
  • [8] Laser microdissection: gene expression analysis at the single-cell level
    Burgemeister, Renate
    Friedemann, Gabi
    Schlieben, Sigrid
    Hitzler, Hermine
    NATURE METHODS, 2007, : AN24 - AN25
  • [9] Bioluminescence imaging of dual gene expression at the single-cell level
    Kwon, HyuckJoon
    Enomoto, Toshiteru
    Shimogawara, Masahiro
    Yasuda, Kazunori
    Nakajima, Yoshihiro
    Ohmiya, Yoshihiro
    BIOTECHNIQUES, 2010, 48 (06) : 460 - 462
  • [10] Gene regulation by a protein translation factor at the single-cell level
    Dolcemascolo, Roswitha
    Goiriz, Lucas M.
    Montagud-Martinez, Roser
    Rodrigo, Guillermo M.
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (05)