Robust control of a wind energy conversion system: FPGA real-time implementation

被引:1
作者
El Attafi, Abdelhafid [1 ]
El Alami, Houda [1 ]
Bossoufi, Badre [1 ]
AlQahtani, Dokhyl [2 ]
Motahhir, Saad [3 ]
Almalki, Mishari Metab [4 ]
Alghamdi, Thamer A. H. [5 ,6 ]
机构
[1] Sidi Mohammed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, LIMS Lab, Fes 30003, Morocco
[2] Prince Sattam bin Abdulaziz Univ, Coll Engn, Dept Elect Engn, Al Kharj 11942, Saudi Arabia
[3] Sidi Mohammed Ben Abdellah Univ, ENSA, Fes 30000, Morocco
[4] Al Baha Univ, Fac Engn, Dept Elect Engn, Alaqiq, Ksa, Saudi Arabia
[5] Cardiff Univ, Wolfson Ctr Magnet, Sch Engn, Cardiff CF24 3AA, England
[6] Al Baha Univ, Fac Engn, Elect Engn Dept, Al Baha 65779, Saudi Arabia
关键词
Wind energy conversion system; FPGA; DFIG; Proportional integral derivative controller; HDL; FPGA-In-the-loop; MATLAB/Simulink; DIRECT-TORQUE CONTROL;
D O I
10.1016/j.heliyon.2024.e35712
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study employs an FPGA board to implement a robust control technique for wind energy conversion systems (WECS). This approach facilitates extensive testing and validation of the control system across diverse wind conditions, utilizing the FPGA's parallel processing capabilities and advanced control algorithms. This method ensures robustness against nonlinearities and system uncertainties. FPGA-in-the-loop (FIL) testing provides precise and effective simulation results, enabling rapid prototyping and iterative modifications of control algorithms. The effectiveness of the robust control strategy is confirmed by FIL findings, demonstrating significant improvements in WECS stability and efficiency. Furthermore, the study highlights the strategy's potential to enhance WECS reliability and efficiency in real-world applications.
引用
收藏
页数:16
相关论文
共 34 条
  • [1] Abderazak S, 2016, 2016 4TH INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING & INFORMATION TECHNOLOGY (CEIT)
  • [2] Afifi S., 2020, SN Computer Science, V1, P1, DOI [DOI 10.1007/S42979-020-00128-9, 10.1007/ s42979-020-00128-9]
  • [3] Direct torque control versus indirect field-oriented control of induction motors for electric vehicle applications
    Aktas, Mustafa
    Awaili, Khaled
    Ehsani, Mehrdad
    Arisoy, Aydemir
    [J]. ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2020, 23 (05): : 1134 - 1143
  • [4] DSPACE-based implementation for observer backstepping power control of DFIG wind turbine
    Bossoufi, Badre
    Karim, Mohammed
    Taoussi, Mohammed
    Aroussi, Hala Alami
    Bouderbala, Manale
    Motahhir, Saad
    Camara, Mamadou Bailo
    [J]. IET ELECTRIC POWER APPLICATIONS, 2020, 14 (12) : 2395 - 2403
  • [5] Observer backstepping control of DFIG-Generators for wind turbines variable-speed: FPGA-based implementation
    Bossoufi, Badre
    Karim, Mohammed
    Lagrioui, Ahmed
    Taoussi, Mohammed
    Derouich, Aziz
    [J]. RENEWABLE ENERGY, 2015, 81 : 903 - 917
  • [6] FOC and DTC: Two viable schemes for induction motors torque control
    Casadei, D
    Profumo, F
    Serra, G
    Tani, A
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2002, 17 (05) : 779 - 787
  • [7] Cherfia N., 2016, Int. J. Electr. Comput. Eng., DOI [10.11591/ijece.v6i2.7858, DOI 10.11591/IJECE.V6I2.7858]
  • [8] Accelerating string set matching in FPGA hardware for Bioinformatics research
    Dandass, Yoginder S.
    Burgess, Shane C.
    Lawrence, Mark
    Bridges, Susan M.
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)
  • [9] Debbou M., 2015, Torque Ripple Minimization of SMC Drive for an Innovative Electric Naval Propulsion System, DOI [10.1109/EPE.2015.7311712, DOI 10.1109/EPE.2015.7311712]
  • [10] El Fadili A., 2013, Nonlinear Controller for Doubly Fed Induction Motor with Bidirectional AC/DC/AC Converter, DOI [10.3182/20130703-3-FR-4038.00040, DOI 10.3182/20130703-3-FR-4038.00040]