A fractional profile decomposition and its application to Kirchhoff-type fractional problems with prescribed mass

被引:2
作者
Tian, Junshan [1 ]
Zhang, Binlin [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional Laplacian; Kirchhoff-type equation; normalized solution; profile decomposition; POSITIVE SOLUTIONS; SCHRODINGER-EQUATIONS; NORMALIZED SOLUTIONS; ELLIPTIC PROBLEMS; EXISTENCE; MULTIPLICITY;
D O I
10.1515/anona-2024-0029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the following fractional Kirchhoff-type problems with critical and sublinear nonlinearities:<br /> {{a+b (RNxRN integral integral)u(x) = u(y)(2 )/ Ix - yN+2s dxdy] -Delta(s)u(q-1 + )u(s-1)(2 )u > 0 , in Omega<br /> -dxdy (-4)3u = lambda u9-1+ u2-1, u> 0, in Q,<br /> ju = 0, in R<^>\Q,<br /> Su2dx = c2,<br /> where (-4) is the fractional Laplacian, QC RN is a bounded domain with Lipschitz boundary, 0 < s < 1,2s <N < 4s, 1 <q <2, lambda > 0, a > 0, b > 0, c> 0. First, we prove that the bounded Palais-Smale sequence has a profile decomposition in the fractional Laplacian setting. Then, by utilizing decomposition techniques and variational methods, we acquire that there are two positive normalized solutions for the aforementioned problems.
引用
收藏
页数:25
相关论文
共 38 条
  • [1] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [2] [Anonymous], 1997, Adv. Differential Equations
  • [3] POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS
    BREZIS, H
    NIRENBERG, L
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) : 437 - 477
  • [4] Bucur C, 2016, LECT NOTES UNIONE MA, V20, pXI
  • [5] AN EXISTENCE RESULT FOR NONLINEAR ELLIPTIC PROBLEMS INVOLVING CRITICAL SOBOLEV EXPONENT
    CAPOZZI, A
    FORTUNATO, D
    PALMIERI, G
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1985, 2 (06): : 463 - 470
  • [6] Correia JN, 2019, CALC VAR PARTIAL DIF, V58, DOI 10.1007/s00526-019-1502-7
  • [7] Daz J. I., 1985, Elliptic Equ. Res. Notes Math, V1, P106
  • [8] A FREE FRACTIONAL VISCOUS OSCILLATOR AS A FORCED STANDARD DAMPED VIBRATION
    Devillanova, Giuseppe
    Marano, Giuseppe Carlo
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (02) : 319 - 356
  • [9] Hitchhiker's guide to the fractional Sobolev spaces
    Di Nezza, Eleonora
    Palatucci, Giampiero
    Valdinoci, Enrico
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05): : 521 - 573
  • [10] VARIATIONAL PRINCIPLE
    EKELAND, I
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 47 (02) : 324 - 353