FUSION SPARSE AND SHAPING REWARD FUNCTION IN SOFT ACTOR-CRITIC DEEP REINFORCEMENT LEARNING FOR MOBILE ROBOT NAVIGATION

被引:0
|
作者
Abu Bakar, Mohamad Hafiz [1 ]
Shamsudin, Abu Ubaidah [1 ]
Soomro, Zubair Adil [1 ]
Tadokoro, Satoshi [2 ]
Salaan, C. J. [3 ]
机构
[1] Univ Tun Hussein Onn Malaysia, Fac Elect & Elect Engn, Batu Pahat 86400, Johor, Malaysia
[2] Tohoku Univ, 2 Chome 1-1 Katahira,Aoba Ward, Sendai, Miyagi 9808577, Japan
[3] MSU Iligan Inst Technol, Dept Elect Engn & Technol, Andres Bonifacio Ave, Lanao Del Norte 9200, Philippines
来源
JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY | 2024年 / 86卷 / 02期
关键词
Soft Actor Critic Deep Reinforcement Learning (SAC DRL); Deep Reinforcement Learning; Mobile robot navigation; Reward function; Sparse reward; Shaping reward;
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Nowadays, the advancement in autonomous robots is the latest influenced by the development of a world surrounded by new technologies. Deep Reinforcement Learning (DRL) allows systems to operate automatically, so the robot will learn the next movement based on the interaction with the environment. Moreover, since robots require continuous action, Soft Actor Critic Deep Reinforcement Learning (SAC DRL) is considered the latest DRL approach solution. SAC is used because its ability to control continuous action to produce more accurate movements. SAC fundamental is robust against unpredictability, but some weaknesses have been identified, particularly in the exploration process for accuracy learning with faster maturity. To address this issue, the study identified a solution using a reward function appropriate for the system to guide in the learning process. This research proposes several types of reward functions based on sparse and shaping reward in SAC method to investigate the effectiveness of mobile robot learning. Finally, the experiment shows that using fusion sparse and shaping rewards in the SAC DRL successfully navigates to the target position and can also increase accuracy based on the average error result of 4.99%.
引用
收藏
页码:37 / 49
页数:13
相关论文
共 50 条
  • [21] Symmetric actor-critic deep reinforcement learning for cascade quadrotor flight control
    Han, Haoran
    Cheng, Jian
    Xi, Zhilong
    Lv, Maolong
    NEUROCOMPUTING, 2023, 559
  • [22] Actor-Critic Deep Reinforcement Learning for Solving Job Shop Scheduling Problems
    Liu, Chien-Liang
    Chang, Chuan-Chin
    Tseng, Chun-Jan
    IEEE ACCESS, 2020, 8 : 71752 - 71762
  • [23] An Actor-Critic Deep Reinforcement Learning Based Computation Offloading for Three-tier Mobile Computing Networks
    Liu, Yu
    Cui, Qimei
    Zhang, Jian
    Chen, Yu
    Hou, Yanzhao
    2019 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2019,
  • [24] Deep Reinforcement Learning for Mobile Robot Navigation
    Gromniak, Martin
    Stenzel, Jonas
    2019 4TH ASIA-PACIFIC CONFERENCE ON INTELLIGENT ROBOT SYSTEMS (ACIRS 2019), 2019, : 68 - 73
  • [25] Generalization in Deep Reinforcement Learning for Robotic Navigation by Reward Shaping
    Miranda, Victor R. F.
    Neto, Armando A.
    Freitas, Gustavo M.
    Mozelli, Leonardo A.
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (06) : 6013 - 6020
  • [26] Autonomous Navigation by Mobile Robot with Sensor Fusion Based on Deep Reinforcement Learning
    Ou, Yang
    Cai, Yiyi
    Sun, Youming
    Qin, Tuanfa
    SENSORS, 2024, 24 (12)
  • [27] Actor-Critic Deep Reinforcement Learning for Energy Minimization in UAV-Aided Networks
    Yuan, Yaxiong
    Lei, Lei
    Vu, Thang X.
    Chatzinotas, Symeon
    Ottersten, Bjorn
    2020 EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS (EUCNC 2020), 2020, : 348 - 352
  • [28] Density estimation based soft actor-critic: deep reinforcement learning for static output feedback control with measurement noise
    Wang, Ran
    Tian, Ye
    Kashima, Kenji
    ADVANCED ROBOTICS, 2024, 38 (06) : 398 - 409
  • [29] DAG-based workflows scheduling using Actor-Critic Deep Reinforcement Learning
    Koslovski, Guilherme Piegas
    Pereira, Kleiton
    Albuquerque, Paulo Roberto
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 150 : 354 - 363
  • [30] Deep Reinforcement Learning Based Mobile Robot Navigation: A Review
    Zhu, Kai
    Zhang, Tao
    TSINGHUA SCIENCE AND TECHNOLOGY, 2021, 26 (05) : 674 - 691