Breathomics for diagnosing tuberculosis in diabetes mellitus patients

被引:0
作者
Xu, Rong [1 ]
Zhang, Ying [2 ]
Li, Zhaodong [3 ]
He, Mingjie [1 ]
Lu, Hailin [4 ]
Liu, Guizhen [1 ,5 ]
Yang, Min [5 ]
Fu, Liang [5 ]
Chen, Xinchun [3 ]
Deng, Guofang [5 ]
Wang, Wenfei [6 ]
机构
[1] Gannan Med Univ, Affiliated Hosp 1, Endocrinol Dept, Ganzhou, Peoples R China
[2] Southern Univ Sci & Technol, Peoples Hosp Shenzhen 3, Natl Clin Res Ctr Infect Dis, Dept Endocrinol, Shenzhen, Peoples R China
[3] Shenzhen Univ, Dept Pathogen Biol, Guangdong Prov Key Lab Reg Immun & Dis, Med Sch, Shenzhen, Peoples R China
[4] Gannan Med Univ, Key Lab Prevent & Treatment Cardiovasc & Cerebrova, Minist Educ, Ganzhou, Peoples R China
[5] Southern Univ Sci & Technol, Peoples Hosp Shenzhen 3, Natl Clin Res Ctr Infect Dis, Div 2,Pulm Dis Dept, Shenzhen, Peoples R China
[6] Southern Univ Sci & Technol, Peoples Hosp Shenzhen 3, Natl Clin Res Ctr Infect Dis, Shenzhen, Peoples R China
关键词
breathomics; tuberculosis; diabetes mellitus; volatile organic compounds; XGBoost model; METAANALYSIS;
D O I
10.3389/fmolb.2024.1436135
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Introduction Individuals with diabetes mellitus (DM) are at an increased risk of Mycobacterium tuberculosis (Mtb) infection and progressing from latent tuberculosis (TB) infection to active tuberculosis disease. TB in the DM population is more likely to go undiagnosed due to smear-negative results.Methods Exhaled breath samples were collected and analyzed using high-pressure photon ionization time-of-flight mass spectrometry. An eXtreme Gradient Boosting (XGBoost) model was utilized for breathomics analysis and TB detection.Results XGBoost model achieved a sensitivity of 88.5%, specificity of 100%, accuracy of 90.2%, and an area under the curve (AUC) of 98.8%. The most significant feature across the entire set was m106, which demonstrated a sensitivity of 93%, specificity of 100%, and an AUC of 99.7%.Discussion The breathomics-based TB detection method utilizing m106 exhibited high sensitivity and specificity potentially beneficial for clinical TB screening and diagnosis in individuals with diabetes.
引用
收藏
页数:8
相关论文
共 26 条
  • [1] Association between diabetes mellitus and active tuberculosis: A systematic review and meta-analysis
    Al-Rifai, Rami H.
    Pearson, Fiona
    Critchley, Julia A.
    Abu-Raddad, Laith J.
    [J]. PLOS ONE, 2017, 12 (11):
  • [2] Volatile Organic Compound Identification-Based Tuberculosis Screening among TB Suspects: A Diagnostic Accuracy Study
    Badola, Mayank
    Agrawal, Anurag
    Roy, Debabrata
    Sinha, Richa
    Goyal, Avisham
    Jeet, Narayan
    [J]. ADVANCES IN RESPIRATORY MEDICINE, 2023, 91 (04) : 301 - 309
  • [3] Diagnostic yield of urine lipoarabinomannan and sputum tuberculosis tests in people living with HIV: a systematic review and meta-analysis of individual participant data
    Broger, Tobias
    Koeppel, Lisa
    Huerga, Helena
    Miller, Poppy
    Gupta-Wright, Ankur
    Blanc, Francois-Xavier
    Esmail, Aliasgar
    Reeve, Byron W. P.
    Floridia, Marco
    D Kerkhoff, Andrew
    Ciccacci, Fausto
    Kasaro, Margaret P.
    Thit, Swe Swe
    Bastard, Mathieu
    Ferlazzo, Gabriella
    Yoon, Christina
    Van Hoving, DanielJ
    Sossen, Bianca
    Garcia, Juan Ignacio
    Cummings, Matthew J.
    Wake, Rachel M.
    Hanson, Josh
    Cattamanchi, Adithya
    Meintjes, Graeme
    Maartens, Gary
    Wood, Robin
    Theron, Grant
    Dheda, Keertan
    Olaru, Ioana Diana
    Denkinger, Claudia M.
    [J]. LANCET GLOBAL HEALTH, 2023, 11 (06): : e903 - e916
  • [4] Tuberculosis and comorbidities: treatment challenges in patients with comorbid diabetes mellitus and depression
    Caceres, Guillermo
    Calderon, Rodrigo
    Ugarte-Gil, Cesar
    [J]. THERAPEUTIC ADVANCES IN INFECTIOUS DISEASE, 2022, 9
  • [5] Rapid Detection of Extensive Drug Resistance by Xpert MTB/XDR Optimizes Therapeutic Decision-Making in Rifampin-Resistant Tuberculosis Patients
    Chen, Xinchang
    Li, Rong
    Ge, Shijia
    Li, Yang
    Cai, Cui
    Weng, Taoping
    Zhang, Yilin
    Jiang, Jingwen
    Feng, Zhen
    Chen, Yuanyuan
    Zhang, Yungui
    Ma, Jian
    Persing, David H.
    Chen, Jiazhen
    Tang, Yi-Wei
    Sun, Feng
    Zhang, Wenhong
    [J]. JOURNAL OF CLINICAL MICROBIOLOGY, 2023, 61 (06)
  • [6] Genetics of diabetes mellitus and diabetes complications
    Cole, Joanne B.
    Florez, Jose C.
    [J]. NATURE REVIEWS NEPHROLOGY, 2020, 16 (07) : 377 - 390
  • [7] Trends in the Development of Electronic Noses Based on Carbon Nanotubes Chemiresistors for Breathomics
    Freddi, Sonia
    Sangaletti, Luigi
    [J]. NANOMATERIALS, 2022, 12 (17)
  • [8] A cross-sectional study: a breathomics based pulmonary tuberculosis detection method
    Fu, Liang
    Wang, Lei
    Wang, Haibo
    Yang, Min
    Yang, Qianting
    Lin, Yi
    Guan, Shanyi
    Deng, Yongcong
    Liu, Lei
    Li, Qingyun
    He, Mengqi
    Zhang, Peize
    Chen, Haibin
    Deng, Guofang
    [J]. BMC INFECTIOUS DISEASES, 2023, 23 (01)
  • [9] Unlocking the secrets: Volatile Organic Compounds (VOCs) and their devastating effects on lung cancer
    Hussain, Md Sadique
    Gupta, Gaurav
    Mishra, Riya
    Patel, Neeraj
    Gupta, Saurabh
    Alzarea, Sami I.
    Kazmi, Imran
    Kumbhar, Popat
    Disouza, John
    Dureja, Harish
    Kukreti, Neelima
    Singh, Sachin Kumar
    Dua, Kamal
    [J]. PATHOLOGY RESEARCH AND PRACTICE, 2024, 255
  • [10] Breathomics for the clinician: the use of volatile organic compounds in respiratory diseases
    Ibrahim, Wadah
    Carr, Liesl
    Cordell, Rebecca
    Wilde, Michael J.
    Salman, Dahlia
    Monks, Paul S.
    Thomas, Paul
    Brightling, Chris E.
    Siddiqui, Salman
    Greening, Neil J.
    [J]. THORAX, 2021, 76 (05) : 514 - 521