Deciphering Knee Osteoarthritis Diagnostic Features With Explainable Artificial Intelligence: A Systematic Review

被引:0
作者
Teoh, Yun Xin [1 ,2 ]
Othmani, Alice [2 ]
Li Goh, Siew [3 ,4 ]
Usman, Juliana [1 ]
Lai, Khin Wee [1 ]
机构
[1] Univ Malaya, Fac Engn, Dept Biomed Engn, Kuala Lumpur 50603, Malaysia
[2] Univ Paris Est Creteil, Lab Images Signaux & Syst Intelligents LISSI, F-94400 Vitry sur Seine, France
[3] Univ Malaya, Fac Med, Sports & Exercise Med Res & Educ Grp, Kuala Lumpur 50603, Malaysia
[4] Univ Malaya, Fac Med, Ctr Epidemiol & Evidence Based Practice, Kuala Lumpur 50603, Malaysia
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Artificial intelligence; Explainable AI; Data models; Predictive models; Medical diagnostic imaging; Osteoarthritis; Accuracy; Computer aided diagnosis; explainable artificial intelligence; explanation representation; knee osteoarthritis; radiology; MACHINE; CLASSIFICATION; RADIOGRAPHS; BIOMARKERS; NETWORKS;
D O I
10.1109/ACCESS.2024.3439096
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Existing artificial intelligence (AI) models for diagnosing knee osteoarthritis (OA) have faced criticism for their lack of transparency and interpretability, despite achieving medical-expert-like performance. This opacity makes them challenging to trust in clinical practice. Recently, explainable artificial intelligence (XAI) has emerged as a specialized technique that can provide confidence in the model's prediction by revealing how the prediction is derived, thus promoting the use of AI systems in healthcare. This paper presents the first survey of XAI techniques used for knee OA diagnosis. This survey identified 78 AI-based primary knee OA diagnostic test accuracy studies, of which 70 (89.7%) employed XAI. In 34 out of 70 (48.6%) of studies, XAI was utilized for the goal of visualization of predictions. Gradient-weighted class activation mapping (GradCAM) is the most common technique, being used in 24 out of 70 studies (34.3%), followed by SHapley Additive exPlanations (SHAP), being used in 9 out of 70 (12.9%) studies. All included studies analyzed the outcomes generated by XAI methods through qualitative analysis. However, only three studies utilized quantitative measures to evaluate the reliability of the XAI outcomes. We also observed that 64.3% of the studies utilized widely-circulated dataset, namely Osteoarthritis Initiative (OAI) extensively.The XAI techniques are discussed from two perspectives: data interpretability and model interpretability. Our paper provides an overview of XAI's potential towards a more reliable knee OA diagnosis approach and helps to encourage its adoption in clinical practice.
引用
收藏
页码:109080 / 109108
页数:29
相关论文
共 126 条
[1]  
AI HLEG, 2019, Ethics Guidelines for Trustworthy AI, DOI [10.2759/346720, DOI 10.2759/346720]
[2]   Knee Osteoarthritis Detection Using an Improved CenterNet With Pixel-Wise Voting Scheme [J].
Aladhadh, Suliman ;
Mahum, Rabbia .
IEEE ACCESS, 2023, 11 :22283-22296
[3]   Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence [J].
Ali, Sajid ;
Abuhmed, Tamer ;
El-Sappagh, Shaker ;
Muhammad, Khan ;
Alonso-Moral, Jose M. ;
Confalonieri, Roberto ;
Guidotti, Riccardo ;
Del Ser, Javier ;
Diaz-Rodriguez, Natalia ;
Herrera, Francisco .
INFORMATION FUSION, 2023, 99
[4]  
Angelini F., Ann. Rheumatic
[5]  
Antony J, 2016, INT C PATT RECOG, P1195, DOI 10.1109/ICPR.2016.7899799
[6]   Machine Learning Approaches to the Prediction of Osteoarthritis Phenotypes and Outcomes [J].
Arbeeva, Liubov ;
Minnig, Mary C. ;
Yates, Katherine A. ;
Nelson, Amanda E. .
CURRENT RHEUMATOLOGY REPORTS, 2023, 25 (11) :213-225
[7]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[8]   Adaptive segmentation of knee radiographs for selecting the optimal ROI in texture analysis [J].
Bayramoglu, N. ;
Tiulpin, A. ;
Hirvasniemi, J. ;
Nieminen, M. T. ;
Saarakkala, S. .
OSTEOARTHRITIS AND CARTILAGE, 2020, 28 (07) :941-952
[9]   A Review on Explainable Artificial Intelligence for Healthcare: Why, How, and When? [J].
Bharati S. ;
Mondal M.R.H. ;
Podder P. .
IEEE Transactions on Artificial Intelligence, 2024, 5 (04) :1429-1442
[10]   Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet [J].
Bien, Nicholas ;
Rajpurkar, Pranav ;
Ball, Robyn L. ;
Irvin, Jeremy ;
Park, Allison ;
Jones, Erik ;
Bereket, Michael ;
Patel, Bhavik N. ;
Yeom, Kristen W. ;
Shpanskaya, Katie ;
Halabi, Safwan ;
Zucker, Evan ;
Fanton, Gary ;
Amanatullah, Derek F. ;
Beaulieu, Christopher F. ;
Riley, Geoffrey M. ;
Stewart, Russell J. ;
Blankenberg, Francis G. ;
Larson, David B. ;
Jones, Ricky H. ;
Langlotz, Curtis P. ;
Ng, Andrew Y. ;
Lungren, Matthew P. .
PLOS MEDICINE, 2018, 15 (11)