Model-free stabilization via Extremum Seeking using a cost neural estimator

被引:1
作者
Dubbioso, Sara [1 ,2 ]
Jalalvand, Azarakhsh [3 ]
Wai, Josiah [3 ]
De Tommasi, Gianmaria [1 ,2 ]
Kolemen, Egemen [3 ,4 ]
机构
[1] Univ Studi Napoli Federico II, Dipartimento Ingn Elettr & Tecnol Informaz, Naples, Italy
[2] Consorzio CREATE, Naples, Italy
[3] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08540 USA
[4] Princeton Plasma Phys Lab, Princeton, NJ USA
关键词
Neural network; Plasma vertical stabilization; Extremum Seeking; Model-free; PLASMA VERTICAL STABILIZATION; TOKAMAK; DESIGN;
D O I
10.1016/j.eswa.2024.125204
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a fully model-free architecture for vertical stabilization of thermonuclear plasmas in tokamak experimental reactors is presented. For the first time, an Extremum Seeking control algorithm is combined with neural networks to estimate the Lyapunov function to be minimized, resulting in a fully data-driven control architecture. The performance of different neural networks are compared. Specifically, Multilayer Perceptrons and Extreme Learning Machines are considered. The proposed architecture is tested in simulation to show that it can counteract relevant plasma disturbances, resulting in a significant improvement in terms of the achievable operative space compared to the Extremum Seeking algorithm, which still relies on model-based cost estimator.
引用
收藏
页数:19
相关论文
共 75 条
[1]   ITER-like vertical stabilization system for the east Tokamak [J].
Albanese, R. ;
Ambrosino, R. ;
Castaldo, A. ;
De Tommasi, G. ;
Luo, Z. P. ;
Mele, A. ;
Pironti, A. ;
Xiao, B. J. ;
Yuan, Q. P. .
NUCLEAR FUSION, 2017, 57 (08)
[2]   CREATE-NL plus : A robust control-oriented free boundary dynamic plasma equilibrium solver [J].
Albanese, R. ;
Ambrosino, R. ;
Mattei, M. .
FUSION ENGINEERING AND DESIGN, 2015, 96-97 :664-667
[3]   Plasma Vertical Stabilization in the ITER Tokamak via Constrained Static Output Feedback [J].
Ambrosino, G. ;
Ariola, M. ;
De Tommasi, G. ;
Pironti, A. .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2011, 19 (02) :376-381
[4]  
Ambrosino R, 2015, IEEE INTL CONF CONTR, P1290, DOI 10.1109/CCA.2015.7320790
[5]  
[Anonymous], 2018, European Research Roadmap to the Realisation of Fusion Energy
[6]   Plasma shape control for the JET Tokamak - An optimal output regulation approach [J].
Ariola, M ;
Pironti, A .
IEEE CONTROL SYSTEMS MAGAZINE, 2005, 25 (05) :65-75
[7]  
Ariola M., 2016, Magnetic Control of Tokamak Plasmas, V2nd
[8]   Disruption prediction at JET through deep convolutional neural networks using spatiotemporal information from plasma profiles [J].
Aymerich, E. ;
Sias, G. ;
Pisano, F. ;
Cannas, B. ;
Carcangiu, S. ;
Sozzi, C. ;
Stuart, C. ;
Carvalho, P. J. ;
Fanni, A. .
NUCLEAR FUSION, 2022, 62 (06)
[9]   A statistical approach for the automatic identification of the start of the chain of events leading to the disruptions at JET [J].
Aymerich, E. ;
Fanni, A. ;
Sias, G. ;
Carcangiu, S. ;
Cannas, B. ;
Murari, A. ;
Pau, A. .
NUCLEAR FUSION, 2021, 61 (03)
[10]   Performance Comparison of Machine Learning Disruption Predictors at JET [J].
Aymerich, Enrico ;
Cannas, Barbara ;
Pisano, Fabio ;
Sias, Giuliana ;
Sozzi, Carlo ;
Stuart, Chris ;
Carvalho, Pedro ;
Fanni, Alessandra .
APPLIED SCIENCES-BASEL, 2023, 13 (03)