MORO: A Multi-behavior Graph Contrast Network for Recommendation

被引:2
作者
Jiang, Weipeng [1 ]
Duan, Lei [1 ,2 ]
Ding, Xuefeng [1 ]
Chen, Xiaocong [1 ]
机构
[1] Sichuan Univ, Sch Comp Sci, Chengdu, Peoples R China
[2] Sichuan Univ, Med X Ctr Informat, Chengdu, Peoples R China
来源
WEB AND BIG DATA, PT III, APWEB-WAIM 2022 | 2023年 / 13423卷
基金
中国国家自然科学基金;
关键词
Multi-behavior recommendation; Graph neural network; Multi-task learning; Representation learning;
D O I
10.1007/978-3-031-25201-3_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-behavior recommendation models exploit diverse behaviors of users (e.g., page view, add-to-cart, and purchase) and successfully alleviate the data sparsity and cold-start problems faced by classical recommendation methods. In real-world scenarios, the interactive behaviors between users and items are often complex and highly dependent. Existing multi-behavior recommendation models do not fully utilize multi-behavior information in the following two aspects: (1) The diversity of user behavior resulting from the individualization of users' intents. (2) The loss of user multi-behavior information due to inappropriate information fusion. To fill this gap, we hereby propose a multi-behavior graph contrast network (MORO). Firstly, MORO constructs multiple behavior representations of users from different behavior graphs and aggregate these representations based on behavior intents of each user. Secondly, MORO develops a contrast enhancement module to capture information of high-order heterogeneous paths and reduce information loss. Extensive experiments on three real-world datasets show that MORO outperforms state-of-the-art baselines. Furthermore, the preference analysis implies that MORO can accurately model user multi-behavior preferences.
引用
收藏
页码:117 / 131
页数:15
相关论文
共 23 条
[1]  
[Anonymous], 2012, CoRR
[2]  
Chen C, 2021, AAAI CONF ARTIF INTE, V35, P3958
[3]  
Du C, 2018, AAAI CONF ARTIF INTE, P2175
[4]   Neural Multi-Task Recommendation from Multi-Behavior Data [J].
Gao, Chen ;
He, Xiangnan ;
Gan, Dahua ;
Chen, Xiangning ;
Feng, Fuli ;
Li, Yong ;
Chua, Tat-Seng ;
Jin, Depeng .
2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2019), 2019, :1554-1557
[5]   Buying or Browsing? : Predicting Real-time Purchasing Intent using Attention-based Deep Network with Multiple Behavior [J].
Guo, Long ;
Hua, Lifeng ;
Jia, Rongfei ;
Zhao, Binqiang ;
Wang, Xiaobo ;
Cui, Bin .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :1984-1992
[6]   Neural Collaborative Filtering [J].
He, Xiangnan ;
Liao, Lizi ;
Zhang, Hanwang ;
Nie, Liqiang ;
Hu, Xia ;
Chua, Tat-Seng .
PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), 2017, :173-182
[7]   Multi-behavior Recommendation with Graph Convolutional Networks [J].
Jin, Bowen ;
Gao, Chen ;
He, Xiangnan ;
Jin, Depeng ;
Li, Yong .
PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, :659-668
[8]   MATRIX FACTORIZATION TECHNIQUES FOR RECOMMENDER SYSTEMS [J].
Koren, Yehuda ;
Bell, Robert ;
Volinsky, Chris .
COMPUTER, 2009, 42 (08) :30-37
[9]   UltraGCN: Ultra Simplification of Graph Convolutional Networks for Recommendation [J].
Mao, Kelong ;
Zhu, Jieming ;
Xiao, Xi ;
Lu, Biao ;
Wang, Zhaowei ;
He, Xiucliang .
PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, :1253-1262
[10]   Modeling Relational Data with Graph Convolutional Networks [J].
Schlichtkrull, Michael ;
Kipf, Thomas N. ;
Bloem, Peter ;
van den Berg, Rianne ;
Titov, Ivan ;
Welling, Max .
SEMANTIC WEB (ESWC 2018), 2018, 10843 :593-607