A Learnable and Explainable Wavelet Neural Network for EEG Artifacts Detection and Classification

被引:0
|
作者
Yu, Yifei [1 ]
Li, Yuanxiang [1 ]
Zhou, Yunqing [2 ]
Wang, Yingyan [2 ]
Wang, Jiwen [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Aeronaut & Astronaut, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Childrens Med Ctr, Sch Med, Dept Neurol, Shanghai 200127, Peoples R China
关键词
Electroencephalography; Brain modeling; Neural networks; Task analysis; Feature extraction; Predictive models; Clinical diagnosis; EEG artifacts; artifacts detection and classification; wavelet decomposition; invertible neural network;
D O I
10.1109/TNSRE.2024.3452315
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Electroencephalography (EEG) artifacts are very common in clinical diagnosis and can heavily impact diagnosis. Manual screening of artifact events is labor-intensive with little benefit. Therefore, exploring algorithms for automatic detection and classification of EEG artifacts can significantly assist clinical diagnosis. In this paper, we propose a learnable and explainable wavelet neural network (WaveNet) for EEG artifact detection and classification. The model is powered by the wavelet decomposition block based on invertible neural network, which can extract signal features without information loss, and a tree generator for building wavelet tree structure automatically. They provide the model with good feature extraction capabilities and explainability. To evaluate the model's performance more fairly, we introduce the base point level matching score (BASE) and the Event-Aligned Compensation Scoring (EACS) at the event level as two metrics for model performance evaluation. On the challenging Temple University EEG Artifact (TUAR) dataset, our model outperforms other baselines in terms of F1-score for both artifact detection and classification tasks. The case study also validates the model's ability to offer explainability for predictions based on frequency band energy, suggesting potential applications in clinical diagnosis.
引用
收藏
页码:3358 / 3368
页数:11
相关论文
共 50 条
  • [31] Wavelet neural network model for network intrusion detection system
    Hamid Y.
    Shah F.A.
    Sugumaran M.
    International Journal of Information Technology, 2019, 11 (2) : 251 - 263
  • [32] EEG signals classification based on autoregressive and inherently quantum recurrent neural network
    Taha, Saleem Mr
    Taha, Zahraa K.
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2018, 58 (04) : 340 - 351
  • [33] Classification of EEG Signals Using Relative Wavelet Energy and Artificial Neural Networks
    Guo, Ling
    Rivero, Daniel
    Seoane, Jose A.
    Pazos, Alejandro
    WORLD SUMMIT ON GENETIC AND EVOLUTIONARY COMPUTATION (GEC 09), 2009, : 177 - 183
  • [34] Classification of epileptic EEG signals using PSO based artificial neural network and tunable-Q wavelet transform
    George, S. Thomas
    Subathra, M. S. P.
    Sairamya, N. J.
    Susmitha, L.
    Premkumar, M. Joel
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2020, 40 (02) : 709 - 728
  • [35] Detection of normal and epileptic EEG signals using by lifting based HAAR wavelet transform and artificial neural network
    Vani, S.
    ChandraSekhar, P.
    Sankriti, Ramanarayan
    Aparna, G.
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2021,
  • [36] Sleep stage classification using wavelet transform and neural network
    Oropesa, E
    Cycon, HL
    Jobert, M
    PROCEEDINGS OF THE FIFTH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1 AND 2, 2000, : 811 - 814
  • [37] Improved Domain Adaptation Network Based on Wasserstein Distance for Motor Imagery EEG Classification
    She, Qingshan
    Chen, Tie
    Fang, Feng
    Zhang, Jianhai
    Gao, Yunyuan
    Zhang, Yingchun
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 1137 - 1148
  • [38] Neural network classification of EEG during camouflaged object identification
    Rzempoluck, EJ
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 1997, 44 (03) : 169 - 175
  • [39] Shallow Inception Domain Adaptation Network for EEG-Based Motor Imagery Classification
    Huang, Xiuyu
    Choi, Kup-Sze
    Zhou, Nan
    Zhang, Yuanpeng
    Chen, Badong
    Pedrycz, Witold
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (02) : 521 - 533
  • [40] EEG-Based Cognitive State Classification and Analysis of Brain Dynamics Using Deep Ensemble Model and Graphical Brain Network
    Das Chakladar, Debashis
    Roy, Partha Pratim
    Iwamura, Masakazu
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (04) : 1507 - 1519