A FUSION OF A DISCRETE WAVELET TRANSFORM-BASED AND TIME-DOMAIN FEATURE EXTRACTION FOR MOTOR IMAGERY CLASSIFICATION

被引:0
作者
Yassin, Fouziah Md [1 ,2 ]
Norwawi, Norita Md [3 ]
Noh, Nor Azila [4 ,5 ]
Alias, Afishah [6 ]
Tamam, Sofina [4 ,7 ]
机构
[1] Uni Sains Islam Malaysia, Fac Sci & Tech, Sabah, Malaysia
[2] Univ Malaysia Sabah, Fac Sci & Nat Resources, Sabah, Malaysia
[3] Univ Sains Islam Malaysia, Fac Sci & Technol, Cyber Secur & Syst Res Unit, Negeri Sembilan, Malaysia
[4] Univ Sains Islam Malaysia, Brain & Behav Res Grp, Negeri Sembilan, Malaysia
[5] Univ Sains Islam Malaysia, Fac Med & Hlth Sci, Negeri Sembilan, Malaysia
[6] Univ Tun Hussein Onn, Fac Appl Sci & Technol, Johor Baharu, Malaysia
[7] Univ Sains Islam Malaysia, Brain & Behav Res Grp, Negeri Sembilan, Malaysia
来源
JORDANIAN JOURNAL OF COMPUTERS AND INFORMATION TECHNOLOGY | 2024年 / 10卷 / 02期
关键词
Motor imagery; Feature extraction; Electroencephalogram (EEG); Discrete wavelet transform; Brain-computer interface; BRAIN-COMPUTER INTERFACES; EEG SIGNALS; SELECTION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A motor imagery (MI)-based brain-computer interface (BCI) has performed successfully as a control mechanism with multiple electroencephalogram (EEG) channels. For practicality, fewer EEG channels are preferable. This paper investigates a single-channel EEG signal for MI. However, there are insufficient features that can be extracted due to a single-channel EEG signal being used in one region of the brain. An effective feature extraction technique plays a critical role in overcoming this limitation. Therefore, this study proposes a fusion of discrete wavelet transform (DWT)-based and time-domain feature extraction to provide more relevant information for classification. The highest accuracy obtained on the BCI Competition III (IVa) dataset is 87.5% with logistic regression (LR) while the OpenBMI dataset attained the highest accuracy of 93% with support vector machine (SVM) as the classifier. Addressing the potential of enhancing the performance of a single EEG channel located on the forehead, the achieved result is relatively promising.
引用
收藏
页码:108 / 122
页数:15
相关论文
共 53 条
[1]  
Abdul-Latif AA, 2004, PROCEEDINGS OF THE 2004 INTELLIGENT SENSORS, SENSOR NETWORKS & INFORMATION PROCESSING CONFERENCE, P531
[2]   High Theta and Low Alpha Powers May Be Indicative of BCI-Illiteracy in Motor Imagery [J].
Ahn, Minkyu ;
Cho, Hohyun ;
Ahn, Sangtae ;
Jun, Sung Chan .
PLOS ONE, 2013, 8 (11)
[3]   General model for best feature extraction of EEG using discrete wavelet transform wavelet family and differential evolution [J].
al-Qerem, Ahmad ;
Kharbat, Faten ;
Nashwan, Shadi ;
Ashraf, Staish ;
Blaou, Khairi .
INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2020, 16 (03)
[4]   EEG-Based Control for Upper and Lower Limb Exoskeletons and Prostheses: A Systematic Review [J].
AL-Quraishi, Maged S. ;
Elamvazuthi, Irraivan ;
Daud, Siti Asmah ;
Parasuraman, S. ;
Borboni, Alberto .
SENSORS, 2018, 18 (10)
[5]   Observation and motor imagery balance tasks evaluation: An fNIRS feasibility study [J].
Almulla, Latifah ;
Al-Naib, Ibraheem ;
Ateeq, Ijlal Shahrukh ;
Althobaiti, Murad .
PLOS ONE, 2022, 17 (03)
[6]   Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques [J].
Amin, Hafeez Ullah ;
Malik, Aamir Saeed ;
Ahmad, Rana Fayyaz ;
Badruddin, Nasreen ;
Kamel, Nidal ;
Hussain, Muhammad ;
Chooi, Weng-Tink .
AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE, 2015, 38 (01) :139-149
[7]   A BCI System Based on Motor Imagery for Assisting People with Motor Deficiencies in the Limbs [J].
Attallah, Omneya ;
Abougharbia, Jaidaa ;
Tamazin, Mohamed ;
Nasser, Abdelmonem A. .
BRAIN SCIENCES, 2020, 10 (11) :1-25
[8]   A Hybrid EMD-Wavelet EEG Feature Extraction Method for the Classification of Students' Interest in the Mathematics Classroom [J].
Babiker, Areej ;
Faye, Ibrahima .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
[9]   The BCI competition III:: Validating alternative approaches to actual BCI problems [J].
Blankertz, Benjamin ;
Mueller, Klaus-Robert ;
Krusienski, Dean J. ;
Schalk, Gerwin ;
Wolpaw, Jonathan R. ;
Schloegl, Alois ;
Pfurtscheller, Gert ;
Millan, Jose D. R. ;
Schroeder, Michael ;
Birbaumer, Niels .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2006, 14 (02) :153-159
[10]   A Systematic Review on Motor-Imagery Brain-Connectivity-Based Computer Interfaces [J].
Brusini, Lorenza ;
Stival, Francesca ;
Setti, Francesco ;
Menegatti, Emanuele ;
Menegaz, Gloria ;
Storti, Silvia Francesca .
IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2021, 51 (06) :725-733