Parameter identification method of load modeling based on improved dung beetle optimizer algorithm

被引:0
|
作者
Xing, Chao [1 ]
Xi, Xinze [1 ]
He, Xin [1 ]
Deng, Can [1 ]
机构
[1] Yunnan Power Grid Co Ltd, Elect Power Res Inst, Kunming, Peoples R China
来源
FRONTIERS IN ENERGY RESEARCH | 2024年 / 12卷
关键词
DBO algorithm; good point set; parameter identification; load modeling; electric power system;
D O I
10.3389/fenrg.2024.1415796
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The role of load modeling in power systems is crucial for both operational and regulatory considerations. It is essential to develop an effective and reliable method for optimizing load modeling parameter identification. In this paper, the dung beetle algorithm is improved by using the good point set, and a load model parameter identification strategy based on the good point set dung beetle optimization algorithm (GDBO) within the framework of the measurement-based load modeling method. The proposed parameter identification strategy involves utilizing PMU voltage data as input, selecting a comprehensive load model, and refining the initialization process based on the good point set to mitigate the influence of local maxima. Through iterative optimization of the objective function using the Dung Beetle Optimizer (DBO) algorithm, the optimal parameters for the comprehensive load model are determined, enhancing the model's ability to accurately capture the power curve. Analysis of examples pertaining to PMU-measured modeling parameter identification reveals that the proposed GDBO algorithm, which incorporates a good point set, outperforms alternative methods such as the improved differential evolution algorithm (IDE), particle swarm optimization algorithm (PSO), grey wolf optimization algorithm (GWO), and conventional DBO algorithm. This demonstrates the superior performance of the introduced approach in the context of load model parameter identification.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Parameter identification of PMSM based on dung beetle optimization algorithm
    Yang, Xiaoliang
    Cui, Yuyue
    Jia, Lianhua
    Sun, Zhihong
    Zhang, Peng
    Zhao, Jiane
    Wang, Rui
    ARCHIVES OF ELECTRICAL ENGINEERING, 2023, 72 (04) : 1055 - 1072
  • [2] Parameter Identification of PEMFC Model Using Improved Dung Beetle Optimization Algorithm
    Zhang, Jingfeng
    Sun, Yalu
    Dong, Haiying
    He, Xin
    ELECTRONICS, 2025, 14 (01):
  • [3] Traction Load Modeling and Parameter Identification Based on Improved Sparrow Search Algorithm
    Wu, Zhensheng
    Fan, Deling
    Zou, Fan
    ENERGIES, 2022, 15 (14)
  • [4] Robot Manipulator Minimum Jerk Trajectory Planning Based on the Improved Dung Beetle Optimizer Algorithm
    Ma, Haohao
    As'arry, Azizan
    Cong, Miaomiao
    Delgoshaei, Aidin
    Ismail, Mohd Idris Shah
    Ramli, Hafiz Rashidi
    Wu, Xuping
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2025, 34 (01)
  • [5] Load modeling and parameter identification based on random fuzziness clustering
    Liu, L. (liuluhhs@126.com), 1600, Automation of Electric Power Systems Press (37): : 50 - 58
  • [6] Parameter Identification for the Dynamic Load Modeling Based on Denoising Method of the Measurement Data
    Wang Lidi
    Tang Jiangfeng
    Shi Junsheng
    HIGH PERFORMANCE STRUCTURES AND MATERIALS ENGINEERING, PTS 1 AND 2, 2011, 217-218 : 907 - +
  • [7] Equivalent Circuit Modeling and Parameter Identification for Lithium-ion Batteries Based on Improved Barnacle Mating Optimizer
    Li, Jiarong
    Lin, Cheng-Jian
    Wang, Haiyu
    Kan, Jiarong
    SENSORS AND MATERIALS, 2022, 34 (09) : 3649 - 3670
  • [8] Non-Intrusive Load Identification Method Based on Improved KM Algorithm
    Xiao, Yong
    Hu, Yue
    He, Hengjing
    Zhou, Dongguo
    Zhao, Yun
    Hu, Wenshan
    IEEE ACCESS, 2019, 7 : 151368 - 151377
  • [9] Parameter Identification of Time-varying Exponential Load Model Based on Improved RLS Algorithm
    Chen H.
    Hao R.
    Liu Y.
    Wang H.
    Wang T.
    Li D.
    Chen, Han (chenhan@bjtu.edu.cn), 1600, Science Press (46): : 2380 - 2387
  • [10] Parameter identification of photovoltaic cell model based on improved ant lion optimizer
    Wu, Zhongqiang
    Yu, Danqi
    Kang, Xiaohua
    ENERGY CONVERSION AND MANAGEMENT, 2017, 151 : 107 - 115