Effect of Aqueous Ferrous Ion on Collectorless Flotation of Pyrite

被引:0
作者
Reyes Perez, Martin [1 ,4 ]
Camacho Gutierrez, Esmeralda [1 ]
Escudero Garcia, Ramiro [2 ]
Flores Guerrero, Mizraim U. [3 ]
Perez Labra, Miguel [1 ]
Reyes Dominguez, Ivan A. [3 ]
Juarez Tapia, Julio Cesar [1 ]
Barrientos Hernandez, Francisco Raul [1 ]
Ruiz Sanchez, Angel [1 ]
机构
[1] Autonomous Univ State Hidalgo, Acad Area Earth Sci & Mat, Rd Pachuca Tulancingo Kilometer 4-5, Mineral De La Reforma, Hidalgo, Mexico
[2] Univ Michoacana, Inst Res Met & Mat, Morelia 45000, Michoacan, Mexico
[3] Technol Univ Tulancingo, Ind Electromech Area, Tulancingo 43642, Hidalgo, Mexico
[4] Autonomous Univ San Luis Potosi, Inst Met, San Luis Potosi 78210, San Luis Potosi, Mexico
来源
CHARACTERIZATION OF MINERALS, METALS, AND MATERIALS 2024 | 2024年
关键词
Pyrite; Collectorless; Flotation; Depression; FTIR; ADSORPTION; DEPRESSION; BIOPOLYMERS; MECHANISM; PH;
D O I
10.1007/978-3-031-50304-7_36
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The presence of pyrite in the mineral concentrates of the base metals obtained during flotation is a common problem; the depression of these impurities continues under investigation. This paper analyzes the surface state by FTIR of pyrite obtained during collectorless flotation using several concentrations of ferrous sulfate (FS) as a depressant. The results found show that the presence of 300 mg/L Fe2+ at pH 6 depresses the pyrite, obtaining a 25% (w/w) cumulative flotation, at pulp potentials of + 300 mV, while in the absence of FS it is 89.9% (w/w). for all the concentrations analyzed (100, 160, 240 and 300 mg/L) the pyrite flotation is less than 50%, the pyrite surfaces characterized by FTIR indicate the presence of different species of iron oxides such as akaganeite, lepidocrocite, schwertmanite as well as the presence free sulfate ion responsible for the pyrite depression.
引用
收藏
页码:379 / 388
页数:10
相关论文
共 20 条
[1]   Catalytic effect of pyrite on the leaching of chalcopyrite concentrates in chemical, biological and electrobiochemical systems [J].
Ahmadi, Ali ;
Ranjbar, Mohammad ;
Schaffie, Mahin .
MINERALS ENGINEERING, 2012, 34 :11-18
[2]   Metal ions and dextrin adsorption on pyrite [J].
Bogusz, E ;
Brienne, SR ;
Butler, I ;
Rao, SR ;
Finch, JA .
MINERALS ENGINEERING, 1997, 10 (04) :441-445
[3]   Arsenic removal from aqueous solution using pyrite [J].
Bulut, Gulay ;
Yenial, Unzile ;
Emiroglu, Emrecan ;
Sirkeci, Ayhan Ali .
JOURNAL OF CLEANER PRODUCTION, 2014, 84 :526-532
[4]   Characterization of structure-function properties relevant to copper-activated pyrite depression by different starches [J].
Chapagai, Madan Kumar ;
Fletcher, Brenton ;
Gidley, Michael J. .
CARBOHYDRATE POLYMERS, 2023, 312
[5]   Application of TG-FTIR to study SO2 evolved during the thermal decomposition of coal-derived pyrite [J].
Cheng, Hongfei ;
Liu, Qinfu ;
Huang, Man ;
Zhang, Shilong ;
Frost, Ray L. .
THERMOCHIMICA ACTA, 2013, 555 :1-6
[6]  
Cornell R. M., 2003, The iron oxides: structure, properties, reactions, occurrences and uses
[7]   Effect of carbonate ions on pyrite (FeS2) dissolution [J].
Descostes, M ;
Beaucaire, C ;
Mercier, F ;
Savoye, S ;
Sow, J ;
Zuddas, P .
BULLETIN DE LA SOCIETE GEOLOGIQUE DE FRANCE, 2002, 173 (03) :265-270
[8]   Interaction of thionocarbamate and thiourea collectors with sulphide minerals: a flotation and adsorption study [J].
Fairthorne, G ;
Fornasiero, D ;
Ralston, J .
INTERNATIONAL JOURNAL OF MINERAL PROCESSING, 1997, 50 (04) :227-242
[9]   Flotation of auriferous arsenopyrite from pyrite using thionocarbamate [J].
Forson, P. ;
Zanin, M. ;
Abaka-Wood, G. ;
Skinner, W. ;
Asamoah, R. K. .
MINERALS ENGINEERING, 2022, 181
[10]   In situ Fourier transform infrared measurements of sulfate adsorption on hematite in aqueous solutions [J].
Hug, SJ .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1997, 188 (02) :415-422