Top-quark rare decays with flavor violation

被引:1
作者
Liu, Ming-Yue [1 ,2 ,3 ]
Zhao, Shu-Min [1 ,2 ,3 ]
Gao, Song [1 ,2 ,3 ]
Han, Xing-Yu [1 ,2 ,3 ]
Feng, Tai-Fu [1 ,2 ,3 ,4 ]
机构
[1] Hebei Univ, Dept Phys, Baoding 071002, Peoples R China
[2] Hebei Key Lab High Precis Computat & Applicat Quan, Baoding 071002, Peoples R China
[3] Hebei Res Ctr Basic Discipline Computat Phys, Baoding 071002, Peoples R China
[4] Chongqing Univ, Dept Phys, Chongqing 401331, Peoples R China
关键词
Top quark; flavor violation; U(1)(X) SSM; new physics; CHANGING NEUTRAL COUPLINGS; STANDARD; CURRENTS; GAMMA; LIGHT; SUSY;
D O I
10.1088/1674-1137/ad53bb
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In the present study, we investigated the decays of the top quark: t -> c gamma, t -> cg, t -> cZ, and t -> ch. They are extremely rare processes in the standard model (SM). As the U(1) extension of the minimal supersymmetric standard model (MSSM), the U(1)(X) SSM features new superfields such as the right-handed neutrinos and three Higgs singlets. We analyzed the effects of different sensitive parameters on the results and made reasonable theoretical predictions, thereby providing a useful reference for future experimental development. Considering the constraint set by the updated experimental data, the numerical results show that the branching ratios of the four processes, i.e., t -> c gamma, cg, cZ, ch, can reach the same order of magnitude as their experimental upper limits. Among them, tan beta has the most evident effect on these processes and is the main parameter; gX, gYX, mu, M-2, lambda H, MU232, and M-Q23(2) are also important parameters for the processes, and have effects on the numerical results.
引用
收藏
页数:14
相关论文
共 61 条
[1]  
Aaboud (ATLAS Collaboration) M., 2018, Phys. Lett. B, V784, P345, DOI [10.1016/j.physletb.2018.07.050, DOI 10.1016/J.PHYSLETB.2018.07.050]
[2]   Search for high-mass dilepton resonances using 139 fb-1 of pp collision data collected at √s=13 TeV with the ATLAS detector [J].
Aad, G. ;
Abbott, B. ;
Abbott, D. C. ;
Abdinov, O. ;
Abud, A. Abed ;
Abeling, K. ;
Abhayasinghe, D. K. ;
Abidi, S. H. ;
AbouZeid, O. S. ;
Abraham, N. L. ;
Abramowicz, H. ;
Abreu, H. ;
Abulaiti, Y. ;
Acharya, B. S. ;
Achkar, B. ;
Adachi, S. ;
Adam, L. ;
Bourdarios, C. Adam ;
Adamczyk, L. ;
Adamek, L. ;
Adelman, J. ;
Adersberger, M. ;
Adiguzel, A. ;
Adorni, S. ;
Adye, T. ;
Affolder, A. A. ;
Afik, Y. ;
Agapopoulou, C. ;
Agaras, M. N. ;
Aggarwal, A. ;
Agheorghiesei, C. ;
Aguilar-Saavedra, J. A. ;
Ahmadov, F. ;
Ahmed, W. S. ;
Ai, X. ;
Aielli, G. ;
Akatsuka, S. ;
Akesson, T. P. ;
Akilli, E. ;
Akimov, A., V ;
Al Khoury, K. ;
Alberghi, G. L. ;
Albert, J. ;
Alconada Verzini, M. J. ;
Alderweireldt, S. ;
Aleksa, M. ;
Aleksandrov, I. N. ;
Alexa, C. ;
Alexandre, D. ;
Alexopoulos, T. .
PHYSICS LETTERS B, 2019, 796 :68-87
[3]  
Aad (ATLAS G., 2015, Phys. Rev. Lett, V114, P191803, DOI [10.1103/PhysRevLett.114.191803, DOI 10.1103/PHYSREVLETT.114.191803]
[4]  
Aad (ATLAS) G., 2022, Eur. Phys. J. C, V82, P334, DOI [10.1140/epjc/s10052-022-10182-7, DOI 10.1140/EPJC/S10052-022-10182-7]
[5]  
Aad G., 2024, arXiv
[6]  
Abachi (D0) S., 1995, Phys. Rev. Lett, V74, P2632, DOI [10.1103/PhysRevLett.74.2632, DOI 10.1103/PHYSREVLETT.74.2632]
[7]  
Abe (CDF) F., 1995, Phys. Rev. Lett, V74, P2626, DOI [10.1103/PhysRevLett.74.2626, DOI 10.1103/PHYSREVLETT.74.2626]
[8]  
Agashe K, 2013, Arxiv, DOI arXiv:1311.2028
[9]  
Aguilar-Saavedra JA, 2004, ACTA PHYS POL B, V35, P2695
[10]   Probing top flavour-changing neutral scalar couplings at the CERN LHC [J].
Aguilar-Saavedra, JA ;
Branco, GC .
PHYSICS LETTERS B, 2000, 495 (3-4) :347-356