Effects of Polyethylene Terephthalate Particle Size on the Performance of Engineered Cementitious Composites

被引:0
|
作者
Chen, Shijia [1 ]
Liu, Runan [1 ]
Liu, Liuyi [1 ]
Huang, Xinying [1 ]
Lin, Jiaxiang [1 ]
机构
[1] Guangdong Univ Technol, Sch Civil & Transportat Engn, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
polyethylene terephthalate (PET) aggregate; particle size; engineered cementitious composite (ECC); interfacial transition zone (ITZ); mechanical properties; CONCRETE; AGGREGATE; BEHAVIOR; WASTE; ECC; DURABILITY;
D O I
10.3390/polym16152143
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This study utilizes polyethylene terephthalate (PET) aggregate of different particle sizes (21 mu m, 107 mu m, and 244 mu m) to replace natural aggregate in the preparation of PET-modified engineered cementitious composite (P-ECC). The impact of PET aggregate particle size on the performance of P-ECC is examined herein from micro to macro levels. The focus is on the influence patterns and mechanisms of P-ECC's workability, its basic mechanical properties, and its microstructure. Crack parameters are processed to quantitatively analyze crack development patterns. Using microscopic techniques, the interfacial transition zone (ITZ) between different aggregates and the cement matrix is compared, and the failure mechanism of P-ECC is analyzed. The results show that the incorporation of PET aggregate can improve P-ECC's workability and reduce its self-weight, but incorporation has a negative effect on compressive strength. Additionally, the particle size of PET aggregate significantly affects the uniaxial tensile performance of P-ECC. Compared to conventional ECC, the tensile strength of P-S (21 mu m PET) increased the most markedly (18.1%), and the ultimate tensile strain of P-M (107 mu m PET) increased the most markedly (66.0%), with both demonstrating good crack control and deformation energy dissipation capabilities. The uniaxial tensile performance of P-L (244 mu m PET) was lower than that of the conventional ECC. Microscopic tests revealed that the increase in PET aggregate particle size enlarges the ITZ width and its surrounding pores. Appropriate pore enlargement is beneficial for enhancing tensile ductility, while excessive pores have a negative effect. The study results reveal the impact of PET aggregate particle size on the performance of P-ECC, providing new insights for the performance optimization of ECC.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] ENGINEERED CEMENTITIOUS COMPOSITES - A REVIEW
    Mishra, Mudit
    Lazarus, Gift Pon D.
    Tomar, Rajat Kumar
    IIOAB JOURNAL, 2019, 10 : 121 - 126
  • [22] Flexural performance of concrete beams containing engineered cementitious composites
    Shanour, Ali S.
    Said, Mohamed
    Arafa, Alaa Ibrahim
    Maher, Amira
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 180 : 23 - 34
  • [23] Enhancing the interfacial bond performance of engineered cementitious composites and concrete
    Huang, Jincan
    Hou, Wei
    Li, Zhiqiang
    Liu, Yang
    Zhang, Yixin
    ADVANCES IN STRUCTURAL ENGINEERING, 2024, 27 (08) : 1415 - 1428
  • [24] On the Cementitious Mixtures Reinforced with Waste Polyethylene Terephthalate
    Coviello, Cristiano Giuseppe
    La Scala, Armando
    Sabba, Maria Francesca
    Carnimeo, Leonarda
    MATERIALS, 2024, 17 (21)
  • [25] Evaluation of the effects of nanomaterials on durability of engineered cementitious composites exposed to the aggressive environment
    Mansoori, Alireza
    Behfarnia, Kiachehr
    JOURNAL OF COMPOSITE MATERIALS, 2020, 54 (14) : 1807 - 1817
  • [26] Size-dependent model to predict the flexural strength of 3D printed engineered cementitious composites beams
    Yu, Jie
    Teng, Fei
    Ye, Junhong
    Zhang, Dong
    Yu, Kequan
    Yu, Jiangtao
    Dai, Jian-Guo
    Weng, Yiwei
    CONSTRUCTION AND BUILDING MATERIALS, 2025, 462
  • [27] Experimental investigation on engineered cementitious composites (ECC) with different types of fibers
    Elwafa, Omnia Abo
    Kohail, Mohamed
    Galal, Mahmoud
    Khalaf, Mohamed A.
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2024, 9 (08)
  • [28] Development of basalt fiber engineered cementitious composites and its mechanical properties
    Xu, Mingfeng
    Song, Song
    Feng, Lei
    Zhou, Jian
    Li, Hui
    Li, Victor C.
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 266
  • [29] Mechanical and shrinkage performance of 3D-printed rubberised engineered cementitious composites
    Aslani, Farhad
    Dale, Ryan
    Hamidi, Fatemeh
    Valizadeh, Afsaneh
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 339
  • [30] Mechanical performance of mono and hybrid synthetic fibers engineered cementitious composites with silica fume
    Yuvaraj, K.
    Sakthivel, M.
    Karthick, M. Dhivakar
    Pradeep, T.
    Veerapathran, M.
    Gowtham, S.
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2024, 25 (02): : 254 - 260