Composted maize straw under fungi inoculation reduces soil N2O emissions and mitigates the microbial N limitation in a wheat upland

被引:0
|
作者
Zhou, Rong [1 ,2 ]
Wang, Hui [1 ,2 ]
Zhang, Jingru [1 ,2 ]
Chen, Zhe [1 ,2 ]
Jin, Penghui [1 ,2 ]
Hu, Tianlong [1 ,2 ]
Bian, Qing [1 ,2 ]
Lin, Xingwu [1 ]
Zhao, Xueqiang [1 ,2 ]
Xie, Zubin [1 ]
机构
[1] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, 71 East Beijing Rd, Nanjing 210008, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Compost; Fungi inoculation; Nitrous oxide; Nitrogen assimilation; Functional gene; Enzyme activities; NITROUS-OXIDE; CARBON; FERTILIZER; DYNAMICS; STOICHIOMETRY; ADDITIONS; BACTERIAL; BIOCHAR; BIOMASS; GROWTH;
D O I
10.1016/j.scitotenv.2024.175728
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Enhancement of microbial assimilation of inorganic nitrogen (N) by straw addition is believed to be an effective pathway to improve farmland N cycling. However, the effectiveness of differently pretreated straws on soil N2O emissions and soil N-acquiring enzyme activities remains unclear. In this study, a pot experiment with four treatments (I, no addition, CK; II, respective addition of maize straw, S; III, composted maize straw under no fungi inoculation, SC; and IV, composted maize straw under fungi inoculation, SCPA) at the same quantity of carbon (C) input was conducted under the same amount of inorganic N fertilization. Results showed that the seasonal cumulative N2O emissions following the SCPA treatment were the lowest at 4.03 kg N ha(-1), representing a significant reduction of 19 % compared with the CK treatment. The S and SC treatments had no significant effects on N2O emissions. The decrease of soil N2O emissions following the SCPA treatment was mainly attributed to the increase of microbial N assimilation and the increased abundance of functional genes related to N2O reductase. The SCPA treatment significantly decreased soil alkaline phosphatase (ALP) activity and increased leucine aminopeptidase (LAP) activity at the basal fertilization, while increased soil ALP and LAP activity, decreased soil N-Acetyl-beta-D-Glucosidase (NAG) activity at harvest. Compared with the CK treatment, the S, SC, and SCPA treatment significantly increased soil beta-glucosidase (beta-GC) activity at harvest. The decrease in the (NAG+LAP)/ALP ratio following the SCPA treatment indicated that the composted maize straw under fungi inoculation alleviated microbial N limitation at harvest. Moreover, PICRUSt analysis also suggested that the SCPA treatment increased the abundance of bacterial genes associated with N assimilation and N2O reduction, whereas the S and SC treatment did not significantly affect the abundance of N2O reduction genes compared with the CK treatment. Our results suggest that the composted maize straw under fungi inoculation would reduce the risk of N2O emissions and effectively mitigate the microbial N limitation in dryland wheat system.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Effects of Biochar and Straw on Soil N2O Emission from a Wheat Maize Rotation System
    Tang Z.-M.
    Liu X.-R.
    Zhang Q.-W.
    Li G.-C.
    Huanjing Kexue/Environmental Science, 2021, 42 (03): : 1569 - 1580
  • [22] Yield-scaled N2O emissions were effectively reduced by biochar amendment of sandy loam soil under maize - wheat rotation in the North China Plain
    Niu, Yuhui
    Chen, Zengming
    Mueller, Christoph
    Zaman, Monhammad M.
    Kim, Donggill
    Yu, Hongyan
    Ding, Weixin
    ATMOSPHERIC ENVIRONMENT, 2017, 170 : 58 - 70
  • [23] The interactive effects of dolomite application and straw incorporation on soil N2O emissions
    Shaaban, M.
    Wu, Y.
    Peng, Q.
    Wu, L.
    Van Zwieten, L.
    Khalid, M. S.
    Younas, A.
    Lin, S.
    Zhao, J.
    Bashir, S.
    Zafar-ul-hye, M.
    Abid, M.
    Hu, R.
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2018, 69 (03) : 502 - 511
  • [24] Biochar suppresses N2O emissions and alters microbial communities in an acidic tea soil
    Zheng, Ningguo
    Yu, Yongxiang
    Shi, Wei
    Yao, Huaiying
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2019, 26 (35) : 35978 - 35987
  • [25] Substrate-driven microbial response: A novel mechanism contributes significantly to temperature sensitivity of N2O emissions in upland arable soil
    Song, Alin
    Liang, Yongchao
    Zeng, Xibai
    Yin, Huaqun
    Xu, Duanyang
    Wang, Boren
    Wen, Shilin
    Li, Dongchu
    Fan, Fenliang
    SOIL BIOLOGY & BIOCHEMISTRY, 2018, 118 : 18 - 26
  • [26] Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions?
    Liu, Qi
    Liu, Benjuan
    Zhang, Yanhui
    Lin, Zhibin
    Zhu, Tongbin
    Sun, Ruibo
    Wang, Xiaojie
    Ma, Jing
    Bei, Qicheng
    Liu, Gang
    Lin, Xingwu
    Xie, Zubin
    SOIL BIOLOGY & BIOCHEMISTRY, 2017, 104 : 8 - 17
  • [27] Large N2O emissions from cryoturbated peat soil in tundra
    Repo, Maija E.
    Susiluoto, Sanna
    Lind, Saara E.
    Jokinen, Simo
    Elsakov, Vladimir
    Biasi, Christina
    Virtanen, Tarmo
    Martikainen, Pertti J.
    NATURE GEOSCIENCE, 2009, 2 (03) : 189 - 192
  • [28] Soil N2O emissions and N2O/(N2O+N2) ratio as affected by different fertilization practices and soil moisture
    Ciarlo, E.
    Conti, M.
    Bartoloni, N.
    Rubio, G.
    BIOLOGY AND FERTILITY OF SOILS, 2008, 44 (07) : 991 - 995
  • [29] Biochar suppresses N2O emissions while maintaining N availability in a sandy loam soil
    Case, Sean D. C.
    McNamara, Niall P.
    Reay, David S.
    Stott, Andy W.
    Grant, Helen K.
    Whitaker, Jeanette
    SOIL BIOLOGY & BIOCHEMISTRY, 2015, 81 : 178 - 185
  • [30] Soil N2O emissions and N2O/(N2O+N2) ratio as affected by different fertilization practices and soil moisture
    E. Ciarlo
    M. Conti
    N. Bartoloni
    G. Rubio
    Biology and Fertility of Soils, 2008, 44 : 991 - 995