MXenes as a versatile platform for reactive surface modification and superior sodium-ion storages

被引:126
作者
Wang, Jinjin [1 ]
Du, Cheng-Feng [1 ]
Xue, Yaqing [1 ]
Tan, Xianyi [2 ]
Kang, Jinzhao [1 ]
Gao, Yan [1 ]
Yu, Hong [1 ]
Yan, Qingyu [2 ]
机构
[1] Northwestern Polytech Univ, Ctr Adv Lubricat & Seal Mat, State Key Lab Solidificat Proc, Xian, Shaanxi, Peoples R China
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
来源
EXPLORATION | 2021年 / 1卷 / 02期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
energy; MXene; nanohybrids; sodium-ion storage; surface modify; TRANSITION-METAL CARBIDES; CAPACITY ELECTRODE MATERIAL; REVERSIBLE ANODE MATERIALS; CATHODE MATERIAL; TI3C2; MXENE; PERFORMANCE; BATTERIES; NA; GRAPHENE; LITHIUM;
D O I
10.1002/EXP.20210024
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Owing to the large surface area and adjustable surface properties, the two-dimensional (2D) MXenes have revealed the great potential in constructing hybrid materials and for Na-ion storage (SIS). In particular, the facilitated Na-ion adsorption, intercalation, and migration on MXenes can be achieved by surface modification. Herein, a new surface modification strategy on MXenes, namely, the reactive surface modification (RSM), is focused and illustrated, while the recent advances in the research of SIS performance based on MXenes and their derivatives obtained from the RSM process are briefly summarized as well. In the second section, the intrinsic surface chemistries of MXenes and their surface-related physicochemical properties are first summarized. Meanwhile, the close relationship between the surface characters and the Na-ion adsorption, intercalation, and migration on MXenes is emphasized. Following the SIS properties of MXenes, the surface-induced SIS property variations, and the SIS performance of RSM MXene-based hybrids are discussed progressively. Finally, the existing challenges and prospects on the RSM MXene-based hybrids for SIS are proposed.
引用
收藏
页数:17
相关论文
共 154 条
[1]   Porous nitrogen-doped MXene-based electrodes for capacitive deionization [J].
Amiri, Ahmad ;
Chen, Yijun ;
Teng, Chew Bee ;
Naraghi, Mohammad .
ENERGY STORAGE MATERIALS, 2020, 25 :731-739
[2]   Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers [J].
Anasori, Babak ;
Shi, Chenyang ;
Moon, Eun Ju ;
Xie, Yu ;
Voigt, Cooper A. ;
Kent, Paul R. C. ;
May, Steven J. ;
Billinge, Simon J. L. ;
Barsoum, Michel W. ;
Gogotsi, Yury .
NANOSCALE HORIZONS, 2016, 1 (03) :227-234
[3]   Predicted Surface Composition and Thermodynamic Stability of MXenes in Solution [J].
Ashton, Michael ;
Mathew, Kiran ;
Hennig, Richard G. ;
Sinnoet, Susan B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (06) :3550-3556
[4]   Two-dimensional semiconducting Lu2CT2 (T = F, OH) MXene with low work function and high carrier mobility [J].
Bai, Xiaojing ;
Zha, Xian-Hu ;
Qiao, Yingjie ;
Qiu, Nianxiang ;
Zhang, Yiming ;
Luo, Kan ;
He, Jian ;
Li, Qiuwu ;
Huang, Qing ;
Francisco, Joseph S. ;
Lin, Cheng-Te ;
Du, Shiyu .
NANOSCALE, 2020, 12 (06) :3795-3802
[5]   Na-Ion Intercalation and Charge Storage Mechanism in 2D Vanadium Carbide [J].
Bak, Seong-Min ;
Qiao, Ruimin ;
Yang, Wanli ;
Lee, Sungsik ;
Yu, Xiqian ;
Anasori, Babak ;
Lee, Hungsui ;
Gogotsi, Yury ;
Yang, Xiao-Qing .
ADVANCED ENERGY MATERIALS, 2017, 7 (20)
[6]   A 3.8-V earth-abundant sodium battery electrode [J].
Barpanda, Prabeer ;
Oyama, Gosuke ;
Nishimura, Shin-ichi ;
Chung, Sai-Cheong ;
Yamada, Atsuo .
NATURE COMMUNICATIONS, 2014, 5
[7]   New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon [J].
Bommier, Clement ;
Surta, Todd Wesley ;
Dolgos, Michelle ;
Ji, Xiulei .
NANO LETTERS, 2015, 15 (09) :5888-5892
[8]   Pre-Sodiated Ti3C2Tx MXene Structure and Behavior as Electrode for Sodium-Ion Capacitors [J].
Brady, Alexander ;
Liang, Kun ;
Van Quan Vuong ;
Sacci, Robert ;
Prenger, Kaitlyn ;
Thompson, Matt ;
Matsumoto, Ray ;
Cummings, Peter ;
Irle, Stephan ;
Wang, Hsiu-Wen ;
Naguib, Michael .
ACS NANO, 2021, 15 (02) :2994-3003
[9]   A review on energy chemistry of fast-charging anodes [J].
Cai, Wenlong ;
Yao, Yu-Xing ;
Zhu, Gao-Long ;
Yan, Chong ;
Jiang, Li-Li ;
He, Chuanxin ;
Huang, Jia-Qi ;
Zhang, Qiang .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (12) :3806-3833
[10]   Sodium Vanadium Fluorophosphates (NVOPF) Array Cathode Designed for High-Rate Full Sodium Ion Storage Device [J].
Chao, Dongliang ;
Lai, Chun-Han ;
Liang, Pei ;
Wei, Qiulong ;
Wang, Yue-Sheng ;
Zhu, Changrong ;
Deng, Gang ;
Doan-Nguyen, Vicky V. T. ;
Lin, Jianyi ;
Mai, Liqiang ;
Fan, Hong Jin ;
Dunn, Bruce ;
Shen, Ze Xiang .
ADVANCED ENERGY MATERIALS, 2018, 8 (16)