Frequency domain adaptive framework for visible-infrared person re-identification

被引:0
作者
Wang, Jiangcheng [1 ]
Li, Yize [2 ]
Tao, Xuefeng [3 ]
Kong, Jun [3 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China
[2] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Peoples R China
[3] Jiangnan Univ, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Visible-infrared person re-identification; Cross modality; Frequency domain; Clustering;
D O I
10.1007/s13042-024-02408-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The visible-infrared person re-identification task aims to achieve mutual retrieval between infrared images and visible images. The primary challenge is to learn the mapping of these two modalities into a common latent space. Prior works have mainly focused on network feature extraction, but have overlooked the local information of high-frequency channel features, the global information of low-frequency channel features, and the interaction effects between them, all of which are crucial for effectively aligning feature spaces and enhancing cross-modal recognition accuracy, robustness, and overall performance. To address this issue, we propose a frequency domain adaptive framework. Specifically, we designed the frequency domain adaptive encoder to achieve frequency domain adaptation. And the diverse wise embedding was designed to efficiently extract multi-scale features with fewer parameters. Additionally, we proposed the similarity distance clustering strategy, which reduces the large gaps between different modalities by minimizing the KL divergence between visible-infrared similarity distributions images and the normalized label clustering distributions. Our method has been proven superior on two public datasets and achieves state-of-the-art performance on the RegDB dataset.
引用
收藏
页码:2553 / 2566
页数:14
相关论文
共 50 条
  • [21] Counterfactual Intervention Feature Transfer for Visible-Infrared Person Re-identification
    Li, Xulin
    Lu, Yan
    Liu, Bin
    Liu, Yating
    Yin, Guojun
    Chu, Qi
    Huang, Jinyang
    Zhu, Feng
    Zhao, Rui
    Yu, Nenghai
    COMPUTER VISION, ECCV 2022, PT XXVI, 2022, 13686 : 381 - 398
  • [22] Fine-grained Learning for Visible-Infrared Person Re-identification
    Qi, Mengzan
    Chan, Sixian
    Hang, Chen
    Zhang, Guixu
    Li, Zhi
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2417 - 2422
  • [23] Visible-Infrared Person Re-Identification: A Comprehensive Survey and a New Setting
    Zheng, Huantao
    Zhong, Xian
    Huang, Wenxin
    Jiang, Kui
    Liu, Wenxuan
    Wang, Zheng
    ELECTRONICS, 2022, 11 (03)
  • [24] Grayscale Enhancement Colorization Network for Visible-Infrared Person Re-Identification
    Zhong, Xian
    Lu, Tianyou
    Huang, Wenxin
    Ye, Mang
    Jia, Xuemei
    Lin, Chia-Wen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 1418 - 1430
  • [25] Visible-Infrared Person Re-Identification via Partially Interactive Collaboration
    Zheng, Xiangtao
    Chen, Xiumei
    Lu, Xiaoqiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 6951 - 6963
  • [26] Feature Fusion and Center Aggregation for Visible-Infrared Person Re-Identification
    Wang, Xianju
    Chen, Cuiqun
    Zhu, Yong
    Chen, Shuguang
    IEEE ACCESS, 2022, 10 : 30949 - 30958
  • [27] Partial Enhancement and Channel Aggregation for Visible-Infrared Person Re-Identification
    Jing, Weiwei
    Li, Zhonghua
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2025, E108D (01) : 82 - 91
  • [28] Auxiliary Representation Guided Network for Visible-Infrared Person Re-Identification
    Qi, Mengzan
    Chan, Sixian
    Hang, Chen
    Zhang, Guixu
    Zeng, Tieyong
    Li, Zhi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 340 - 355
  • [29] Visible-Infrared Person Re-Identification Via Feature Constrained Learning
    Zhang Jing
    Chen Guangfeng
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (12)
  • [30] A Three-Stage Framework for Video-Based Visible-Infrared Person Re-Identification
    Hou, Wei
    Wang, Wenxuan
    Yan, Yiming
    Wu, Di
    Xia, Qingyu
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1254 - 1258