MatFusion: A Generative Diffusion Model for SVBRDF Capture

被引:12
作者
Sartor, Sam [1 ]
Peers, Pieter [1 ]
机构
[1] Coll William & Mary, Williamsburg, VA 23187 USA
来源
PROCEEDINGS OF THE SIGGRAPH ASIA 2023 CONFERENCE PAPERS | 2023年
关键词
SVBRDF; Diffusion; Appearance Modeling; APPEARANCE;
D O I
10.1145/3610548.3618194
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We formulate SVBRDF estimation from photographs as a diffusion task. To model the distribution of spatially varying materials, we first train a novel unconditional SVBRDF diffusion backbone model on a large set of 312,165 synthetic spatially varying material exemplars. This SVBRDF diffusion backbone model, named MatFusion, can then serve as a basis for refining a conditional diffusion model to estimate the material properties from a photograph under controlled or uncontrolled lighting. Our backbone MatFusion model is trained using only a loss on the reflectance properties, and therefore refinement can be paired with more expensive rendering methods without the need for backpropagation during training. Because the conditional SVBRDF diffusion models are generative, we can synthesize multiple SVBRDF estimates from the same input photograph from which the user can select the one that best matches the users' expectation. We demonstrate the flexibility of our method by refining different SVBRDF diffusion models conditioned on different types of incident lighting, and show that for a single photograph under colocated flash lighting our method achieves equal or better accuracy than existing SVBRDF estimation methods.
引用
收藏
页数:10
相关论文
共 47 条
  • [1] Reflectance Modeling by Neural Texture Synthesis
    Aittala, Miika
    Aila, Timo
    Lehtinen, Jaakko
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2016, 35 (04):
  • [2] Flexible SVBRDF Capture with a Multi-Image Deep Network
    Deschaintre, Valentin
    Aittala, Miika
    Durand, Fredo
    Drettakis, George
    Bousseau, Adrien
    [J]. COMPUTER GRAPHICS FORUM, 2019, 38 (04) : 1 - 13
  • [3] Single-Image SVBRDF Capture with a Rendering-Aware Deep Network
    Deschaintre, Valentin
    Aittala, Miika
    Durand, Fredo
    Drettakis, George
    Bousseau, Adrien
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2018, 37 (04):
  • [4] Dhariwal P, 2021, ADV NEUR IN, V34
  • [5] Metappearance: Meta-Learning for Visual Appearance Reproduction
    Fischer, Michael
    Ritschel, Tobias
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2022, 41 (06):
  • [6] Deep Inverse Rendering for High-resolution SVBRDF Estimation from an Arbitrary Number of Images
    Gao, Duan
    Li, Xiao
    Dong, Yue
    Peers, Pieter
    Xu, Kun
    Tong, Xin
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (04):
  • [7] MatFormer: A Generative Model for Procedural Materials
    Guerrero, Paul
    Hasan, Milos
    Sunkavalli, Kalyan
    Mech, Radomir
    Boubekeur, Tamy
    Mitra, Niloy J.
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2022, 41 (04):
  • [8] Highlight-Aware Two-Stream Network for Single-Image SVBRDF Acquisition
    Guo, Jie
    Lai, Shuichang
    Tao, Chengzhi
    Cai, Yuelong
    Wang, Lei
    Guo, Yanwen
    Yan, Ling-Qi
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (04):
  • [9] A Bayesian Inference Framework for Procedural Material Parameter Estimation
    Guo, Y.
    Hasan, M.
    Yan, L.
    Zhao, S.
    [J]. COMPUTER GRAPHICS FORUM, 2020, 39 (07) : 255 - 266
  • [10] MaterialGAN: Reflectance Capture using a Generative SVBRDF Model
    Guo, Yu
    Smith, Cameron
    Hasan, Milos
    Sunkavalli, Kalyan
    Zhao, Shuang
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (06):