Non-cyclic torsion of elliptic curves over imaginary quadratic fields of class number 1

被引:0
作者
Balcik, Irmak [1 ]
机构
[1] Northwestern Univ, Dept Math, 2033 Sheridan Rd, Evanston, IL 60208 USA
关键词
Elliptic curves; rational points; isogeny; POINTS; ISOGENIES;
D O I
10.1142/S1793042124501264
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a non-cyclotomic imaginary quadratic field with class number 1 and E/K an elliptic curve with E(K)[2] similar or equal to Z/2Z circle plus Z/2Z. In this paper, we determine the torsion groups that can arise as E(L)tor where L is any quadratic extension of K.
引用
收藏
页码:2641 / 2661
页数:21
相关论文
共 23 条
[1]  
Balcik I., ARXIV
[2]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[3]   A criterion to rule out torsion groups for elliptic curves over number fields [J].
Bruin P. ;
Najman F. .
Research in Number Theory, 2 (1)
[4]   Hyperelliptic modular curves X0(n) and isogenies of elliptic curves over quadratic fields [J].
Bruin, Peter ;
Najman, Filip .
LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2015, 18 (01) :578-602
[5]   Torsion points on elliptic curves over number fields of small degree [J].
Derickx, Maarten ;
Kamienny, Sheldon ;
Stein, William ;
Stoll, Michael .
ALGEBRA & NUMBER THEORY, 2023, 17 (02) :267-308
[6]   Sporadic cubic torsion [J].
Derickx, Maarten ;
Etropolski, Anastassia ;
van Hoeij, Mark ;
Morrow, Jackson S. ;
Zureick-Brown, David .
ALGEBRA & NUMBER THEORY, 2021, 15 (07) :1837-1864
[7]   Torsion of rational elliptic curves over quadratic fields [J].
Gonzalez-Jimenez, Enrique ;
Tornero, Jose M. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2014, 108 (02) :923-934
[8]   On the torsion of elliptic curves over quartic number fields [J].
Jeon, Daeyeol ;
Kim, Chang Heon ;
Park, Euisung .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 74 :1-12
[9]   TORSION POINTS ON ELLIPTIC-CURVES AND Q-COEFFICIENTS OF MODULAR-FORMS [J].
KAMIENNY, S .
INVENTIONES MATHEMATICAE, 1992, 109 (02) :221-229
[10]   Torsion groups of elliptic curves over quadratic fields [J].
Kamienny, Sheldon ;
Najman, Filip .
ACTA ARITHMETICA, 2012, 152 (03) :291-305