Modifying effects and mechanisms of superfine stainless wires on microstructures and mechanical properties of ultra-high performance seawater sea-sand concrete

被引:1
|
作者
Yu, Feng [1 ]
Dong, Sufen [1 ]
Ashour, Ashraf [2 ]
Ding, Siqi [3 ]
Han, Baoguo [1 ]
机构
[1] Dalian Univ Technol, Sch Infrastruct Engn, Dalian 116024, Peoples R China
[2] Univ Bradford, Fac Engn & Informat, Bradford BD7 1DP, England
[3] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
ultra-high performance seawater sea-sand concrete; superfine stainless wire; mechanical properties; chloride ion content; microstructure; FIBER-REINFORCED CONCRETE; CHLORIDE BINDING; BEHAVIORS; CORROSION; DETERIORATION; UHPC;
D O I
10.1007/s11431-024-2729-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ultra-high-performance seawater sea-sand concrete (UHPSSC) presents a prospective solution to address the natural resource shortage in marine infrastructure construction. To eliminate the corrosion risk of steel fibers and broaden the applicability of UHPSSC, this study investigates the mechanical properties and free chloride ion content as well as microstructures of UHPSSC reinforced with superfine stainless wires (SSWs) under natural curing. The results indicate that 1.5% SSWs can remarkably improve the flexural strength and toughness of UHPSSC by 127% and 1724%, respectively, and mitigate the long-term strength degradation of UHPSSC. The strong interfacial bond between SSW and UHPSSC improves the compactness of UHPSSC, thus reducing the growth space for Ca(OH)(2) crystals and swelling hydration products generated by sulfate and magnesium ions. This can be supported by the observed reduction in the Ca/Si ratio of C-S-H gels, CH crystal orientation index, and porosity. Moreover, through mechanisms such as pull-out, rupture, overlapping network, and internal anchor interface, SSWs effectively prevent microcrack growth and propagation, transforming single long-connected microcracks into multiple-emission microcracks centered on SSW. Additionally, the free chloride ion content of the composites at 28 and 180 d meets the ACI 318-19 standard requirements for concrete exposed to seawater. This compliance is attributed to the chloride immobilization facilitated by Friedel's salt and C-S-H gels within the interfaces around SSWs and sea-sand. Consequently, SSWs-reinforced UHPSSC exhibits considerable potential for applications in sustainable marine infrastructures, demanding long-term mechanical properties and high durability.
引用
收藏
页码:3205 / 3220
页数:16
相关论文
共 50 条
  • [31] Effects of recycled sand and shell sand as sand replacement on the dynamic properties of seawater sea-sand recycled aggregate concrete
    Zhang, Qingtian
    Ou, Junrui
    Lan, Qibin
    Zhang, Kaijian
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2024, 13 (11) : 1707 - 1723
  • [32] Sustainable concrete using seawater, sea-sand, and ultrafine palm oil fuel ash: Mechanical properties and durability
    Patah, Dahlia
    Dasar, Amry
    Nurdin, Amalia
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2025, 22
  • [33] Study on the mechanical and rheological properties of ultra-high performance concrete
    Chen, Ying
    Liu, Peng
    Sha, Fei
    Yin, Jian
    He, Sasa
    Li, Qianghui
    Yu, Zhiwu
    Chen, Hailong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 17 : 111 - 124
  • [34] Mechanical Properties of Ultra-High Performance Concrete with Coal Gasification Coarse Slag as River Sand Replacement
    Zhu, Ziqi
    Lian, Xiaoqing
    Zhai, Xiaowei
    Li, Xiaojun
    Guan, Muhong
    Wang, Xiang
    MATERIALS, 2022, 15 (21)
  • [35] Effect of curing regimes on mechanical properties and microstructure of ultra-high performance concrete with full aeolian sand
    Xia, Duotian
    Liu, Hengde
    Liang, Xuan
    CONSTRUCTION AND BUILDING MATERIALS, 2025, 472
  • [36] Microstructural behaviour and shrinkage properties of high-strength fiber-reinforced seawater sea-sand concrete
    Vafaei, Davoud
    Ma, Xing
    Hassanli, Reza
    Duan, Jinming
    Zhuge, Yan
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 320
  • [37] Mechanical properties of modified coral aggregate seawater sea-sand concrete: Experimental study and constitutive model
    Wang, Fei
    Sun, Yingzhi
    Xue, Xuanyi
    Wang, Neng
    Zhou, Junhong
    Hua, Jianmin
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2023, 18
  • [38] The Mechanism of Anticorrosion Performance and Mechanical Property Differences between Seawater Sea-Sand and Freshwater River-Sand Ultra-High-Performance Polymer Cement Mortar (UHPC)
    Li, Tianyu
    Sun, Xin
    Shi, Fangying
    Zhu, Zheng
    Wang, Dezhi
    Tian, Huiwen
    Liu, Xiaoyan
    Lian, Xunhuan
    Bao, Tengfei
    Hou, Baorong
    POLYMERS, 2022, 14 (15)
  • [39] Mechanical properties of fibre reinforced seawater sea-sand recycled aggregate concrete under axial compression
    Huang, Yijie
    Wang, Tongcheng
    Sun, Hongli
    Li, Chuanxi
    Yin, Lei
    Wang, Qing
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 331
  • [40] Mechanical properties, micro-mechanisms, and constitutive models of seawater sea-sand engineered cementitious composites
    Lin, Chenlong
    Huang, Dongming
    Liu, Zhenzhen
    Lu, Yiyan
    JOURNAL OF BUILDING ENGINEERING, 2024, 94