A probabilistic algorithm for bounding the total restrained domination number of a K1,ℓ-free graph

被引:0
|
作者
Joubert, Ernst J. [1 ]
机构
[1] Univ Johannesburg, Dept Math & Appl Math, ZA-2006 Auckland Pk, South Africa
关键词
Graph; Domination; Total restrained domination; Upper bound;
D O I
10.1016/j.dam.2024.07.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, V , E ) be a graph. A set S C V is a total restrained dominating set if every vertex is adjacent to a vertex in S , and every vertex in V - S is adjacent to a vertex in V - S . The total restrained domination number of G , denoted gamma t r ( G ), is the smallest cardinality of a total restrained dominating set of G . In this paper we show that if G is a K 1 ,& ell;-free graph with delta >= & ell; >= 3 and delta >= 5, then ( ) 1- - (2 delta delta - 3) gamma tr ( G ) <= n + o delta (1) . (2 delta ) delta delta - 1 (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:429 / 439
页数:11
相关论文
共 36 条
  • [1] Bounds on the Total Restrained Domination Number of a Graph
    J. H. Hattingh
    E. Jonck
    E. J. Joubert
    Graphs and Combinatorics, 2010, 26 : 77 - 93
  • [2] Bounds on the Total Restrained Domination Number of a Graph
    Hattingh, J. H.
    Jonck, E.
    Joubert, E. J.
    GRAPHS AND COMBINATORICS, 2010, 26 (01) : 77 - 93
  • [3] On a conjecture involving a bound for the total restrained domination number of a graph
    Joubert, Ernst J.
    DISCRETE APPLIED MATHEMATICS, 2019, 258 : 177 - 187
  • [4] Bounding the k-rainbow total domination number
    Ojakian, Kerry
    Skrekovski, Riste
    Tepeh, Aleksandra
    DISCRETE MATHEMATICS, 2021, 344 (08)
  • [5] Restrained Double Domination Number of a Graph
    Kala, R.
    Vasantha, T.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2008, 5 (01) : 73 - 82
  • [6] Equality in a bound that relates the size and the restrained domination number of a graph
    Hattingh, Johannes H.
    Joubert, Ernst J.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (04) : 1586 - 1608
  • [7] Equality in a bound that relates the size and the restrained domination number of a graph
    Johannes H. Hattingh
    Ernst J. Joubert
    Journal of Combinatorial Optimization, 2016, 31 : 1586 - 1608
  • [8] Graphs with large total restrained domination number
    Jiang, Hongxing
    Kang, Liying
    Shan, Erfang
    UTILITAS MATHEMATICA, 2010, 81 : 53 - 63
  • [9] An upper bound on the total restrained domination number of a tree
    Johannes H. Hattingh
    Elizabeth Jonck
    Ernst J. Joubert
    Journal of Combinatorial Optimization, 2010, 20 : 205 - 223
  • [10] Max-min total restrained domination number
    Koh, K. M.
    Maleki, Zeinab
    Omoomi, Behnaz
    ARS COMBINATORIA, 2013, 112 : 161 - 173