Operator Entanglement Growth Quantifies Complexity of Cellular Automata

被引:1
作者
Bakker, Calvin [1 ,2 ]
Merbis, Wout [2 ,3 ]
机构
[1] Leiden Univ, Inst Lorentz, Leiden Inst Phys, Leiden, Netherlands
[2] Univ Amsterdam, Inst Theoret Phys ITFA, Amsterdam, Netherlands
[3] Univ Amsterdam, Dutch Inst Emergent Phenomena DIEP, Amsterdam, Netherlands
来源
COMPUTATIONAL SCIENCE, ICCS 2024, PT I | 2024年 / 14832卷
关键词
Complexity; Complex Systems; Cellular Automata; Tensor Networks; Entanglement Entropy; Quantum Information Theory; MATRIX PRODUCT STATES; RENORMALIZATION-GROUP;
D O I
10.1007/978-3-031-63749-0_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cellular automata (CA) exemplify systems where simple local interaction rules can lead to intricate and complex emergent phenomena at large scales. The various types of dynamical behavior of CA are usually categorized empirically into Wolfram's complexity classes. Here, we propose a quantitative measure, rooted in quantum information theory, to categorize the complexity of classical deterministic cellular automata. Specifically, we construct a Matrix Product Operator (MPO) of the transition matrix on the space of all possible CA configurations. We find that the growth of entropy of the singular value spectrum of the MPO reveals the complexity of the CA and can be used to characterize its dynamical behavior. This measure defines the concept of operator entanglement entropy for CA, demonstrating that quantum information measures can be meaningfully applied to classical deterministic systems.
引用
收藏
页码:33 / 47
页数:15
相关论文
共 26 条
[1]   Operator Entanglement in Interacting Integrable Quantum Systems: The Case of the Rule 54 Chain [J].
Alba, V. ;
Dubail, J. ;
Medenjak, M. .
PHYSICAL REVIEW LETTERS, 2019, 122 (25)
[2]   An overview of quantum cellular automata [J].
Arrighi, P. .
NATURAL COMPUTING, 2019, 18 (04) :885-899
[3]   Quantum Game of Life [J].
Bleh, D. ;
Calarco, T. ;
Montangero, S. .
EPL, 2012, 97 (02)
[4]   Exact large deviation statistics and trajectory phase transition of a deterministic boundary driven cellular automaton [J].
Buca, Berislav ;
Garrahan, Juan P. ;
Prosen, Tomaz ;
Vanicat, Matthieu .
PHYSICAL REVIEW E, 2019, 100 (02)
[5]   Transformations of the one-dimensional cellular automata rule space [J].
Cattaneo, G ;
Formenti, E ;
Margara, L ;
Mauri, G .
PARALLEL COMPUTING, 1997, 23 (11) :1593-1611
[6]   On the dynamical behavior of chaotic cellular automata [J].
Cattaneo, G ;
Formenti, E ;
Margara, L ;
Mauri, G .
THEORETICAL COMPUTER SCIENCE, 1999, 217 (01) :31-51
[7]  
Cook M., 2004, COMPLEX SYST, V15, P1
[8]   Entanglement scaling of operators: a conformal field theory approach, with a glimpse of simulability of long-time dynamics in 1+1d [J].
Dubail, J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (23)
[9]   Entangled quantum cellular automata, physical complexity, and Goldilocks rules [J].
Hillberry, Logan E. ;
Jones, Matthew T. ;
Vargas, David L. ;
Ra, Patrick ;
Halpern, Nicole Yunger ;
Bao, Ning ;
Notarnicola, Simone ;
Montangero, Simone ;
Carr, Lincoln D. .
QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (04)
[10]   SELF-REPRODUCTION IN CELLULAR AUTOMATA [J].
LANGTON, CG .
PHYSICA D, 1984, 10 (1-2) :135-144