X-point radiator and power exhaust control in configurations with multiple X-points in TCV

被引:2
|
作者
Gorno, S. [1 ]
Fevrier, O. [1 ]
Theiler, C. [1 ]
Ewalds, T. [2 ]
Felici, F. [1 ]
Lunt, T. [2 ]
Merle, A. [1 ]
Bagnato, F. [1 ,4 ]
Colandrea, C. [1 ]
Degrave, J. [2 ]
Ducker, R. [1 ]
Durr-Legoupil-Nicoud, G. [1 ]
Duval, B. P. [1 ]
Lee, K. [1 ]
Martinelli, L. [1 ]
Oliveira, D. S. [1 ]
Perek, A. [1 ]
Reimerdes, H. [1 ]
Simons, L. [1 ]
Sun, G. [1 ]
Tracey, B. [2 ]
Wischmeier, M. [3 ]
Wuethrich, C. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland
[2] Google DeepMind, London N1C 4UZ, England
[3] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[4] ITER Org, Route Vinon Sur Verdon,CS 90 046, F-13067 St Paul Les Durance, France
基金
瑞士国家科学基金会;
关键词
ASDEX UPGRADE; DIVERTOR; TOKAMAK; PARAMETERS; SNOWFLAKE; PLASMAS; HEAT; CODE;
D O I
10.1063/5.0201401
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Novel power exhaust solutions are being developed to address the challenge of integrating a high performance fusion core plasma with a well-protected divertor, if the single null configuration does not scale to a reactor device. This work aims to elucidate the physics mechanisms responsible for the reduction in peak target heat flux in configurations with multiple X-points. Experimental studies on tokamak & agrave; configuration variable in the Snowflake Minus configuration are extended to a novel configuration with three nearby divertor X-points, termed a Jellyfish, allowing us to enhance the expected effects of an additional divertor X-point. These studies are complemented by simplified 1D scrape-off layer (SOL) modeling with the SPLEND1D code and by interpretative modeling with the edge transport code EMC3-EIRENE applied to the Snowflake Minus, to further elucidate some of the key underlying processes. We find that configurations with multiple nearby X-points, and increased near-SOL connection length, exhibit reductions in peak target heat flux and an earlier detachment onset compared to a reference single null configuration, consistent with expectations from SPLEND1D. A strong correlation is experimentally observed between the radially localized radiated power and connection length. While this does not necessarily map to higher total divertor radiative losses for configurations with multiple X-points, it can, at least, provide some control over the radial position of the spatial radiation distribution. Experiments are shown to exhibit radial striations in the emissivity of multiple spectral lines in the inter-null region in these configurations. Although comparisons with EMC3-EIRENE simulations support enhanced cross field transport in the inter-null region, additional transport physics is required in the model to obtain a quantitative match with experiment. No significant differences in divertor-core compatibility are attributed to the presence of additional divertor X-points. However, impurity source optimization is required in such geometries to ensure a low core impurity content is maintained.
引用
收藏
页数:16
相关论文
共 31 条
  • [1] Access to an ELM-suppressed X-point radiator regime in TCV snowflake minus configurations
    Reimerdes, H.
    Theiler, C.
    Bernert, M.
    Duval, B. P.
    Gorno, S.
    Hamm, D.
    Lee, K.
    Pan, O.
    Perek, A.
    Simons, L.
    Sun, G.
    Thornton, A.
    Verhaegh, K.
    Wang, Y.
    Zurita, M.
    NUCLEAR MATERIALS AND ENERGY, 2024, 41
  • [2] The X-Point radiating regime at ASDEX Upgrade and TCV
    Bernert, M.
    Wiesen, S.
    Fevrier, O.
    Kallenbach, A.
    Koenders, J. T. W.
    Sieglin, B.
    Stroth, U.
    Bosman, T. O. S. J.
    Brida, D.
    Cavedon, M.
    David, P.
    Dunne, M. G.
    Henderson, S.
    Kool, B.
    Lunt, T.
    McDermott, R. M.
    Pan, O.
    Perek, A.
    Reimerdes, H.
    Sheikh, U.
    Theiler, C.
    van Berkel, M.
    Wijkamp, T.
    Wischmeier, M.
    NUCLEAR MATERIALS AND ENERGY, 2023, 34
  • [3] MODELING AND EXPERIMENTAL STUDIES OF IMPURITY CONTROL IN JET X-POINT CONFIGURATIONS
    HARBOUR, PJ
    SIMONINI, R
    TAGLE, JA
    GOTTARDI, N
    VONHELLERMANN, M
    KEILHACKER, M
    LAWSON, K
    OBRIEN, D
    OROURKE, J
    REICHLE, R
    SPENCE, J
    SUMMERS, DDR
    TARONI, A
    WATKINS, ML
    JOURNAL OF NUCLEAR MATERIALS, 1990, 176 : 739 - 745
  • [4] X-point modelling in linear configurations using BOUT
    Shanahan, B. W.
    Dudson, B. D.
    JOINT VARENNA-LAUSANNE INTERNATIONAL WORKSHOP 2014, 2014, 561
  • [5] First SOLPS-ITER modelling of an X-point radiator in ITER
    Poletaeva, A.
    Rozhansky, V.
    Kaveeva, E.
    Korzueva, V.
    Senichenkov, I.
    Veselova, I.
    Pitts, R. A.
    Bonnin, X.
    NUCLEAR FUSION, 2024, 64 (12)
  • [6] X-point and divertor filament dynamics from gas puff imaging on TCV
    Wuethrich, C.
    Theiler, C.
    Offeddu, N.
    Galassi, D.
    Oliveira, D. S.
    Duval, B. P.
    Fevrier, O.
    Golfinopoulos, T.
    Han, W.
    Marmar, E.
    Terry, J. L.
    Tsui, C. K.
    NUCLEAR FUSION, 2022, 62 (10)
  • [7] SOLPS-ITER simulations of an X-point radiator in the ASDEX Upgrade tokamak
    Pan, O.
    Bernert, M.
    Lunt, T.
    Cavedon, M.
    Kurzan, B.
    Wiesen, S.
    Wischmeier, M.
    Stroth, U.
    NUCLEAR FUSION, 2023, 63 (01)
  • [8] Model for the X-point radiator height and its energetic coupling to the plasma edge
    Stroth, U.
    Bernert, M.
    Lunt, T.
    Pan, O.
    Wolfrum, E.
    ASDEX Upgrade Team
    PLASMA PHYSICS AND CONTROLLED FUSION, 2025, 67 (03)
  • [9] Model for access and stability of the X-point radiator and the threshold for marfes in tokamak plasmas
    Stroth, U.
    Bernert, M.
    Brida, D.
    Cavedon, M.
    Dux, R.
    Huett, E.
    Lunt, T.
    Pan, O.
    Wischmeier, M.
    NUCLEAR FUSION, 2022, 62 (07)
  • [10] Experiments and SOLEDGE3X modeling of dissipative divertor and X-point Radiator regimes in WEST
    Rivals, N.
    Fedorczak, N.
    Tamain, P.
    Bufferand, H.
    Ciraolo, G.
    Yang, H.
    Marandet, Y.
    Gaspar, J.
    Geulin, E.
    Gunn, J. P.
    Guillemaut, C.
    Morales, J.
    Manas, P.
    Nouailletas, R.
    Dimitrova, M.
    Cavalier, J.
    Svoboda, J.
    Reimerdes, H.
    Brida, D.
    Lunt, T.
    Bernert, M.
    NUCLEAR MATERIALS AND ENERGY, 2024, 40