CO2 electrochemical reduction: A state-of-the-art review with economic and environmental analyses

被引:5
|
作者
Leonzio, Grazia [1 ,2 ]
Hankin, Anna [1 ]
Shah, Nilay [1 ]
机构
[1] Imperial Coll London, Chem Engn Dept, London SW7 2AZ, England
[2] Univ Cagliari, Dept Mech Chem & Mat Engn, Via Marengo 2, Cagliari 09123, Italy
来源
关键词
CO 2 electrochemical reduction; Electrolysers; Economic analysis; Environmental analysis; Catalysts; SELECTIVE ELECTROCATALYTIC REDUCTION; SINGLE-CRYSTAL ELECTRODES; CARBON-DIOXIDE; EFFICIENT REDUCTION; AQUEOUS CO2; TECHNOECONOMIC ANALYSIS; FARADAIC EFFICIENCY; FORMIC-ACID; ELECTROREDUCTION; COPPER;
D O I
10.1016/j.cherd.2024.07.014
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The electrochemical reduction of carbon dioxide is an emerging strategy to reduce emissions, allowing the storage of renewable energy and the electrification of the chemical industry according to the principle of carbon dioxide utilization. Valuable fuels and chemical commodities can be obtained by ensuring a closed carbon loop and the main important products are carbon monoxide, formic acid, methanol, methane, ethylene, ethanol, and propanol. Inside this context, here, we explore the state-of-the-art of carbon dioxide electrolysis technologies, showing that efforts have been put into the development of reactor cell architectures and catalysts able to provide high selectivity and efficiency. New insights are currently about the study of reaction mechanisms, optimization of cell design, and development of more performing electro-catalysts. Moreover, an overview of economic and environmental studies based on carbon dioxide electrochemical reduction is conducted in this work and a preliminary screening based on the levelized production cost and climate change impact of several products obtained through carbon dioxide electrochemical reduction is proposed for a large-scale plant. Today, carbon monoxide and formic acid are the primary carbon dioxide reduction product targets from an economic point of view. In the future, production costs are expected to decrease, and other low-carbon products could be competitive with market prices. Renewable energy sources and carbon dioxide with a low carbon footprint contribute to an environmentally friendly electrochemical production process.
引用
收藏
页码:934 / 955
页数:22
相关论文
共 50 条
  • [41] State-of-the-art rotordynamic analyses of pumps
    Gaulard, Frederic
    Schmied, Joachim
    Fuchs, Andreas
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2021, 69 (06)
  • [42] ELECTROCHEMICAL REDUCTION OF CO2 TO METHANE
    FRESE, KW
    SUMMERS, DP
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1986, 191 : 95 - COLL
  • [43] MEDIATED ELECTROCHEMICAL REDUCTION OF CO2
    DUBOIS, DL
    MIEDANER, A
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1986, 191 : 92 - COLL
  • [44] Electrochemical reduction of CO2 to fuels
    Bell, Alexis
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [45] Simulation of the electrochemical reduction of CO2
    Bell, Alexis
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [46] Selectivity in Electrochemical CO2 Reduction
    Saha, Paramita
    Amanullah, Sk
    Dey, Abhishek
    ACCOUNTS OF CHEMICAL RESEARCH, 2022, 55 (02) : 134 - 144
  • [47] Electrochemical reduction of CO2 in microspores
    Yamamoto, T
    Hirota, K
    Tryk, DA
    Hashimoto, K
    Fujishima, A
    Okawa, M
    CHEMISTRY LETTERS, 1998, (08) : 825 - 826
  • [48] Advancements in electrochemical CO2 reduction reaction: A review on CO2 mass transport enhancement strategies
    Zhou, Yuan
    Wang, Ke
    Zheng, Shaojie
    Cheng, Xiao
    He, Yanxiao
    Qin, Wei
    Zhang, Xinghong
    Chang, Haixing
    Zhong, Nianbing
    He, Xuefeng
    CHEMICAL ENGINEERING JOURNAL, 2024, 486
  • [49] Electrochemical reduction of CO2 in micropores
    Department of Applied Chemistry, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
    不详
    不详
    Stud. Surf. Sci. Catal., (585-588):
  • [50] Electrochemical reduction of CO2 in micropores
    Yamamoto, T
    Tryk, DA
    Hashimoto, K
    Fujishima, A
    Okawa, M
    ADVANCES IN CHEMICAL CONVERSIONS FOR MITIGATING CARBON DIOXIDE, 1998, 114 : 585 - 588