Physics-informed neural networks for biopharmaceutical cultivation processes: Consideration of varying process parameter settings

被引:1
|
作者
Adebar, Niklas [1 ]
Arnold, Sabine [2 ]
Herrera, Liliana M. [3 ]
Emenike, Victor N. [4 ]
Wucherpfennig, Thomas [2 ]
Smiatek, Jens [5 ]
机构
[1] Boehringer Ingelheim Pharm GmbH & Co KG, Dev NCE, Ingelheim, Germany
[2] Boehringer Ingelheim Pharm GmbH & Co KG, Bioproc Dev Biol, Biberach, Germany
[3] Boehringer Ingelheim Pharm GmbH & Co KG, Global Innovat & Alliance Management, Biberach, Germany
[4] Boehringer Ingelheim Pharm GmbH & Co KG, HP BioP Launch & Innovat, Ingelheim, Germany
[5] Univ Stuttgart, Inst Computat Phys, D-70569 Stuttgart, Germany
关键词
cultivation and upstream processes; external process parameters; modeling; physics-informed neural networks; upstream; DESIGN; QUALITY;
D O I
10.1002/bit.28851
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We present a new modeling approach for the study and prediction of important process outcomes of biotechnological cultivation processes under the influence of process parameter variations. Our model is based on physics-informed neural networks (PINNs) in combination with kinetic growth equations. Using Taylor series, multivariate external process parameter variations for important variables such as temperature, seeding cell density and feeding rates can be integrated into the corresponding kinetic rates and the governing growth equations. In addition to previous approaches, PINNs also allow continuous and differentiable functions as predictions for the process outcomes. Accordingly, our results show that PINNs in combination with Taylor-series expansions for kinetic growth equations provide a very high prediction accuracy for important process variables such as cell densities and concentrations as well as a detailed study of individual and combined parameter influences. Furthermore, the proposed approach can also be used to evaluate the outcomes of new parameter variations and combinations, which enables a saving of experiments in combination with a model-driven optimization study of the design space.
引用
收藏
页码:123 / 136
页数:14
相关论文
共 50 条
  • [41] Physics-Informed Neural Networks for Heat Transfer Problems
    Cai, Shengze
    Wang, Zhicheng
    Wang, Sifan
    Perdikaris, Paris
    Karniadakis, George E. M.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2021, 143 (06):
  • [42] PHYSICS-INFORMED NEURAL NETWORKS FOR MODELING LINEAR WAVES
    Sheikholeslami, Mohammad
    Salehi, Saeed
    Mao, Wengang
    Eslamdoost, Arash
    Nilsson, Hakan
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 9, 2024,
  • [43] Stiff-PDEs and Physics-Informed Neural Networks
    Sharma, Prakhar
    Evans, Llion
    Tindall, Michelle
    Nithiarasu, Perumal
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (05) : 2929 - 2958
  • [44] Self-adaptive physics-informed neural networks
    McClenny, Levi D.
    Braga-Neto, Ulisses M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 474
  • [45] Δ-PINNs: Physics-informed neural networks on complex geometries
    Costabal, Francisco Sahli
    Pezzuto, Simone
    Perdikaris, Paris
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [46] Physics-Informed Neural Networks with Group Contribution Methods
    Babaei, Mohammad Reza
    Stone, Ryan
    Knotts, Thomas Allen
    Hedengren, John
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (13) : 4163 - 4171
  • [47] Adversarial uncertainty quantification in physics-informed neural networks
    Yang, Yibo
    Perdikaris, Paris
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 394 : 136 - 152
  • [48] Multifidelity modeling for Physics-Informed Neural Networks (PINNs)
    Penwarden, Michael
    Zhe, Shandian
    Narayan, Akil
    Kirby, Robert M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 451
  • [49] Respecting causality for training physics-informed neural networks
    Wang, Sifan
    Sankaran, Shyam
    Perdikaris, Paris
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 421
  • [50] Loss-attentional physics-informed neural networks
    Song, Yanjie
    Wang, He
    Yang, He
    Taccari, Maria Luisa
    Chen, Xiaohui
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 501