Physics-informed neural networks for biopharmaceutical cultivation processes: Consideration of varying process parameter settings

被引:1
|
作者
Adebar, Niklas [1 ]
Arnold, Sabine [2 ]
Herrera, Liliana M. [3 ]
Emenike, Victor N. [4 ]
Wucherpfennig, Thomas [2 ]
Smiatek, Jens [5 ]
机构
[1] Boehringer Ingelheim Pharm GmbH & Co KG, Dev NCE, Ingelheim, Germany
[2] Boehringer Ingelheim Pharm GmbH & Co KG, Bioproc Dev Biol, Biberach, Germany
[3] Boehringer Ingelheim Pharm GmbH & Co KG, Global Innovat & Alliance Management, Biberach, Germany
[4] Boehringer Ingelheim Pharm GmbH & Co KG, HP BioP Launch & Innovat, Ingelheim, Germany
[5] Univ Stuttgart, Inst Computat Phys, D-70569 Stuttgart, Germany
关键词
cultivation and upstream processes; external process parameters; modeling; physics-informed neural networks; upstream; DESIGN; QUALITY;
D O I
10.1002/bit.28851
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We present a new modeling approach for the study and prediction of important process outcomes of biotechnological cultivation processes under the influence of process parameter variations. Our model is based on physics-informed neural networks (PINNs) in combination with kinetic growth equations. Using Taylor series, multivariate external process parameter variations for important variables such as temperature, seeding cell density and feeding rates can be integrated into the corresponding kinetic rates and the governing growth equations. In addition to previous approaches, PINNs also allow continuous and differentiable functions as predictions for the process outcomes. Accordingly, our results show that PINNs in combination with Taylor-series expansions for kinetic growth equations provide a very high prediction accuracy for important process variables such as cell densities and concentrations as well as a detailed study of individual and combined parameter influences. Furthermore, the proposed approach can also be used to evaluate the outcomes of new parameter variations and combinations, which enables a saving of experiments in combination with a model-driven optimization study of the design space.
引用
收藏
页码:123 / 136
页数:14
相关论文
共 50 条
  • [11] SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS
    Son, Hwijae
    Jang, Jin woo
    Han, Woo jin
    Hwang, Hyung ju
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (06) : 1679 - 1705
  • [12] Physics-informed neural networks for diffraction tomography
    Saba, Amirhossein
    Gigli, Carlo
    Ayoub, Ahmed B.
    Psaltis, Demetri
    ADVANCED PHOTONICS, 2022, 4 (06):
  • [13] Physics-informed neural networks for consolidation of soils
    Zhang, Sheng
    Lan, Peng
    Li, Hai-Chao
    Tong, Chen-Xi
    Sheng, Daichao
    ENGINEERING COMPUTATIONS, 2022, 39 (07) : 2845 - 2865
  • [14] Physics-informed neural networks for diffraction tomography
    Amirhossein Saba
    Carlo Gigli
    Ahmed B.Ayoub
    Demetri Psaltis
    Advanced Photonics, 2022, 4 (06) : 48 - 59
  • [15] Physics-Informed Neural Networks for Quantum Control
    Norambuena, Ariel
    Mattheakis, Marios
    Gonzalez, Francisco J.
    Coto, Raul
    PHYSICAL REVIEW LETTERS, 2024, 132 (01)
  • [16] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Munoz-Matute, Judit
    Pardo, David
    Paszynski, Maciej
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 425
  • [17] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Muñoz-Matute, Judit
    Pardo, David
    Paszyński, Maciej
    Computer Methods in Applied Mechanics and Engineering, 2024, 425
  • [18] Physics-informed neural networks for periodic flows
    Shah, Smruti
    Anand, N. K.
    PHYSICS OF FLUIDS, 2024, 36 (07)
  • [19] PINNProv: Provenance for Physics-Informed Neural Networks
    de Oliveira, Lyncoln S.
    Kunstmann, Liliane
    Pina, Debora
    de Oliveira, Daniel
    Mattoso, Marta
    2023 INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING WORKSHOPS, SBAC-PADW, 2023, : 16 - 23
  • [20] Physics-Informed Neural Networks for Power Systems
    Misyris, George S.
    Venzke, Andreas
    Chatzivasileiadis, Spyros
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,