Enhancing hierarchical attention networks with CNN and stylistic features for fake news detection

被引:4
作者
Alghamdi, Jawaher [1 ,2 ]
Lin, Yuqing [1 ,3 ]
Luo, Suhuai [1 ]
机构
[1] Univ Newcastle, Sch Informat & Phys Sci, Newcastle 2308, Australia
[2] King Khalid Univ, Dept Comp Sci, Abha 62521, Saudi Arabia
[3] Jimei Univ, Sch Sci, Xiamen 361021, Peoples R China
关键词
Fake news detection; Attention network; Social media misinformation; Text classification;
D O I
10.1016/j.eswa.2024.125024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rise of social media platforms has led to a proliferation of false information in various forms. Identifying malicious entities on these platforms is challenging due to the complexities of natural language and the sheer volume of textual data. Compounding this difficulty is the ability of these entities to deliberately modify their writing style to make false information appear trustworthy. In this study, we propose a neural-based framework that leverages the hierarchical structure of input text to detect both fake news content and fake news spreaders. Our approach utilizes enhanced Hierarchical Convolutional Attention Networks (eHCAN), which incorporates both style-based and sentiment-based features to enhance model performance. Our results show that eHCAN outperforms several strong baseline methods, highlighting the effectiveness of integrating deep learning (DL) with stylistic features. Additionally, the framework uses attention weights to identify the most critical words and sentences, providing a clear explanation for the model's predictions. eHCAN not only demonstrates exceptional performance but also offers robust evidence to support its predictions.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Multi-Modal fake news Detection on Social Media with Dual Attention Fusion Networks
    Yang, Haitian
    Zhao, Xuan
    Sun, Degang
    Wang, Yan
    Zhu, He
    Ma, Chao
    Huang, Weiqing
    26TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2021), 2021,
  • [12] Role of Contextual Features in Fake News Detection: A Review
    George, Joma
    Skariah, Shintu Mariam
    Xavier, Aleena T.
    2020 INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY (ICITIIT), 2020,
  • [13] Evaluating the effectiveness of publishers’ features in fake news detection on social media
    Ali Jarrahi
    Leila Safari
    Multimedia Tools and Applications, 2023, 82 : 2913 - 2939
  • [14] Modelling Context and Content Features for Fake News Detection
    Phan, Huyen Trang
    Hwang, Dosam
    Seo, Yeong-Seok
    Nguyen, Ngoc Thanh
    EXPERT SYSTEMS, 2025, 42 (03)
  • [15] Fake News Detection Utilizing Social Context Information with Graph Convolutional Networks and Attention Mechanisms
    Yan, Facheng
    Zhang, Mingshu
    Wei, Bin
    Jiang, Wen
    Ren, Kelan
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 406 - 413
  • [16] Multimodal Fusion with BERT and Attention Mechanism for Fake News Detection
    Nguyen Manh Duc Tuan
    Pham Quang Nhat Minh
    2021 RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES (RIVF 2021), 2021, : 43 - 48
  • [17] Hierarchical Semantic Enhancement Network for Multimodal Fake News Detection
    Zhang, Qiang
    Liu, Jiawei
    Zhang, Fanrui
    Xie, Jingyi
    Zha, Zheng-Jun
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3424 - 3433
  • [18] Ensemble graph neural networks for fake news detection using user engagement and text features
    Malik, Aman
    Behera, Dayal Kumar
    Hota, Jhalak
    Swain, Amulya Ratna
    RESULTS IN ENGINEERING, 2024, 24
  • [19] A multimodal fake news detection model based on crossmodal attention residual and multichannel convolutional neural networks
    Song, Chenguang
    Ning, Nianwen
    Zhang, Yunlei
    Wu, Bin
    INFORMATION PROCESSING & MANAGEMENT, 2021, 58 (01)
  • [20] A comprehensive overview of fake news detection on social networks
    Sharma, Upasna
    Singh, Jaswinder
    SOCIAL NETWORK ANALYSIS AND MINING, 2024, 14 (01)