Cooperative Control for Dual-Arm Robots Based on Improved Dynamic Movement Primitives

被引:2
作者
Wang, Dong [1 ,2 ]
Qiu, Chaochao [1 ,2 ]
Lian, Jie [1 ,2 ]
Wan, Weiwei [3 ]
Pan, Qinghui [1 ,2 ]
Dong, Yongxiang [1 ,2 ]
机构
[1] Dalian Univ Technol, Key Lab Intelligent Control & Optimizat Ind Equipm, Minist Educ, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116024, Peoples R China
[3] Osaka Univ, Grad Sch Engn Sci, Osaka 5600043, Japan
基金
中国国家自然科学基金;
关键词
Cooperative control; dual-arm robotic system; dynamic movement primitives (DMPs); impedance control; visual perception;
D O I
10.1109/TIE.2024.3406866
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, a cooperative control scheme for a dual-arm robotic system is proposed to manipulate various objects, where a vision system is utilized to compensate for the uncertainties of manipulated objects. In the proposed strategy, improved dynamic movement primitives (DMPs) are designed to achieve dual-arm robot trajectory learning and generalization. This method solves the problem of excessive initial acceleration in classic DMPs methods while ensuring fast convergence of motion trajectories. Furthermore, the impedance control is employed to adjust the contact force between the robotic manipulator and the object, aiming to achieve compliant control. To verify the feasibility and effectiveness of the proposed scheme, a humanoid dual-arm robotic system is set up with two Kinova MICO manipulators. Experimental results demonstrate that the proposed method successfully completes transportation tasks, highlighting its potential for enhancing robotic manipulation capabilities.
引用
收藏
页数:11
相关论文
共 30 条
[1]  
Amadio F, 2022, IEEE-RAS INT C HUMAN, P496, DOI 10.1109/Humanoids53995.2022.10000233
[2]  
Atkeson CG, 1997, ARTIF INTELL REV, V11, P11, DOI 10.1023/A:1006559212014
[3]   Coupled Multiple Dynamic Movement Primitives Generalization for Deformable Object Manipulation [J].
Cui, Zhenxi ;
Ma, Wanyu ;
Lai, Jiewen ;
Chu, Henry K. ;
Guo, Yi .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) :5381-5388
[4]   Distributed Control for Cooperative Manipulation With Event-Triggered Communication [J].
Dohmann, Pablo Budde Gen. ;
Hirche, Sandra .
IEEE TRANSACTIONS ON ROBOTICS, 2020, 36 (04) :1038-1052
[5]   Internal Force Analysis and Load Distribution for Cooperative Multi-Robot Manipulation [J].
Erhart, Sebastian ;
Hirche, Sandra .
IEEE TRANSACTIONS ON ROBOTICS, 2015, 31 (05) :1238-1243
[6]   Disturbance Observer-Based Neural Network Control of Cooperative Multiple Manipulators With Input Saturation [J].
He, Wei ;
Sun, Yongkun ;
Yan, Zichen ;
Yang, Chenguang ;
Li, Zhijun ;
Kaynak, Okyay .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (05) :1735-1746
[7]  
Hogan N., 1984, AM CONTR C, P304, DOI DOI 10.23919/ACC.1984.4788393
[8]   Toward Generalizable Robotic Dual-Arm Flipping Manipulation [J].
Huang, Haifeng ;
Zeng, Chao ;
Cheng, Long ;
Yang, Chenguang .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (05) :4954-4962
[9]   Deep learning can accelerate grasp-optimized motion planning [J].
Ichnowski, Jeffrey ;
Avigal, Yahav ;
Satish, Vishal ;
Goldberg, Ken .
SCIENCE ROBOTICS, 2020, 5 (48)
[10]   Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors [J].
Ijspeert, Auke Jan ;
Nakanishi, Jun ;
Hoffmann, Heiko ;
Pastor, Peter ;
Schaal, Stefan .
NEURAL COMPUTATION, 2013, 25 (02) :328-373