Electronic Structure Regulated Carbon-Based Single-Atom Catalysts for Highly Efficient and Stable Electrocatalysis

被引:0
|
作者
Sun, Xiaohui [1 ]
Zhang, Peng [1 ]
Zhang, Bangyan [1 ]
Xu, Chunming [1 ]
机构
[1] China Petr Univ Beijing, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon substrates; catalytic performance; electrocatalysis; electronic structure; single atom catalyst; OXYGEN REDUCTION; COORDINATION-NUMBER; HIGH-PERFORMANCE; BORON-NITRIDE; ACTIVE-SITES; CO2; PLATINUM; GRAPHENE; STRATEGY; DENSITY;
D O I
10.1002/smll.202405624
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-atom-catalysts (SACs) with atomically dispersed sites on carbon substrates have attained great advancements in electrocatalysis regarding maximum atomic utilization, unique chemical properties, and high catalytic performance. Precisely regulating the electronic structure of single-atom sites offers a rational strategy to optimize reaction processes associated with the activation of reactive intermediates with enhanced electrocatalytic activities of SACs. Although several approaches are proposed in terms of charge transfer, band structure, orbital occupancy, and the spin state, the principles for how electronic structure controls the intrinsic electrocatalytic activity of SACs have not been sufficiently investigated. Herein, strategies for regulating the electronic structure of carbon-based SACs are first summarized, including nonmetal heteroatom doping, coordination number regulating, defect engineering, strain designing, and dual-metal-sites scheming. Second, the impacts of electronic structure on the activation behaviors of reactive intermediates and the electrocatalytic activities of water splitting, oxygen reduction reaction, and CO2/N2 electroreduction reactions are thoroughly discussed. The electronic structure-performance relationships are meticulously understood by combining key characterization techniques with density functional theory (DFT) calculations. Finally, a conclusion of this paper and insights into the challenges and future prospects in this field are proposed. This review highlights the understanding of electronic structure-correlated electrocatalytic activity for SACs and guides their progress in electrochemical applications. Carbon-supported single-atom-catalysts have exhibited excellent catalytic performance in electrocatalysis. In this review, the approaches are summarized to precisely regulate the electronic structure of single-atom sites, build the relationship between their electronic structure and electrocatalytic activity by combining key characterization techniques with DFT calculations, and propose insights into the challenges and future prospects in this field. image
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Single Atom Catalysts on Carbon-Based Materials
    Rivera-Carcamo, Camila
    Serp, Philippe
    CHEMCATCHEM, 2018, 10 (22) : 5058 - 5091
  • [32] Atom-level interfacial synergy of single-atom site catalysts for electrocatalysis
    Wang, Yao
    Wang, Dingsheng
    Li, Yadong
    JOURNAL OF ENERGY CHEMISTRY, 2022, 65 : 103 - 115
  • [33] Carbon-based single-atom catalysts: impacts of atomic coordination on the oxygen reduction reaction
    Kang, Zhiwen
    Wang, Xiaochen
    Wang, Dan
    Bai, Bing
    Zhao, Yafei
    Xiang, Xu
    Zhang, Bing
    Shang, Huishan
    NANOSCALE, 2023, 15 (22) : 9605 - 9634
  • [34] Research progress on electrocatalytic CO2 reduction over carbon-based single-atom catalysts
    Zhang Y.-Y.
    Chen X.-Y.
    Dong L.-Y.
    He L.
    Hao G.-P.
    Li W.-C.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2023, 51 (11): : 1617 - 1632
  • [35] Electronic Structure Based Intuitive Design Principle of Single-Atom Catalysts for Efficient Electrolytic Nitrogen Reduction
    Kumar, Ritesh
    Singh, Abhishek K.
    CHEMCATCHEM, 2020, 12 (21) : 5456 - 5464
  • [36] Breaking the scaling relationship of ORR on carbon-based single-atom catalysts through building a local collaborative structure
    Fu, Cehuang
    Luo, Liuxuan
    Yang, Lijun
    Shen, Shuiyun
    Wei, Guanghua
    Zhang, Junliang
    CATALYSIS SCIENCE & TECHNOLOGY, 2021, 11 (23) : 7764 - 7772
  • [37] Structure Regulation of Single-atom Catalysts for Electrocatalytic Sensing
    Shu, Yijin
    Mo, Qijie
    Gao, Qingsheng
    CHEMCATCHEM, 2024, 16 (11)
  • [38] Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon dioxide with industrial current densities
    Guo, Hui
    Si, Duan-Hui
    Zhu, Hong-Jing
    Li, Qiu-Xia
    Huang, Yuan-Biao
    Cao, Rong
    ESCIENCE, 2022, 2 (03): : 295 - 303
  • [39] Transition Metals Based Dual Single-atom Catalysts for Oxygen Electrocatalysis: Stunning Advances and Future Prospects
    Ajmal, Saira
    Zhao, Yulin
    Yasin, Ghulam
    Boakye, Felix Ofori
    Tabish, Mohammad
    Alam, Mohammed Mujahid
    Al-Sehemi, Abdullah G.
    Zhao, Wei
    CHEMCATCHEM, 2024, 16 (12)
  • [40] Carbon Nitride-Based Single-Atom Cu Catalysts for Highly Efficient Carboxylation of Alkynes with Atmospheric CO2
    Yang, Peng
    Zuo, Shouwei
    Zhang, Fengtao
    Yu, Bo
    Guo, Shien
    Yu, Xiaoxiao
    Zhao, Yanfei
    Zhang, Jing
    Liu, Zhimin
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (16) : 7327 - 7335