A dual-population-based evolutionary algorithm for multi-objective optimization problems with irregular Pareto fronts
被引:4
作者:
Zhong, Xiaoyu
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
Zhong, Xiaoyu
[1
]
Yao, Xiangjuan
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
Yao, Xiangjuan
[1
]
Gong, Dunwei
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ Sci & Technol, Sch Informat Sci & Technol, Qingdao 266061, Shandong, Peoples R ChinaChina Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
Gong, Dunwei
[2
]
Qiao, Kangjia
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Henan, Peoples R ChinaChina Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
Qiao, Kangjia
[3
]
Gan, Xingjia
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R ChinaChina Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
Gan, Xingjia
[4
]
Li, Zhangxiao
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
Li, Zhangxiao
[1
]
机构:
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
[2] Qingdao Univ Sci & Technol, Sch Informat Sci & Technol, Qingdao 266061, Shandong, Peoples R China
[3] Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Henan, Peoples R China
[4] Cent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R China
When solving multi-objective optimization problems (MOPs) with irregular Pareto fronts (e.g., disconnected, degenerated, inverted) via evolutionary algorithms, a critical issue is how to obtain a set of well-distributed Pareto optimal solutions. To remedy this issue, we propose a dual-population-based evolutionary algorithm with individual exploitation and weight vector adaptation, named DPEA-IEAW. Specifically, the two populations, termed globPop and locPop, , individually evolve by decomposition-based and Pareto dominance-based methods, responsible for global evolution and local evolution, respectively. These two populations collaborate through substantial information exchange, thereby facilitating each other's evolution. Firstly, the distribution of the two populations is analyzed and an individual exploitation operation is designed for locPop to exploit some promising areas that are undeveloped in globPop. . Then, the guide-position is devised for globPop to indicate the optimal point for a subproblem on the Pareto front (PF). By using the guide-position, a strategy for generating uniform weight vectors is proposed to improve the population diversity. Finally, comprehensive experiments on 37 widely used test functions and 2 real-world problems demonstrate that the proposed DPEA-IEAW outperforms comparison algorithms in solving MOPs with various PFs.
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
Chen, Guoyu
Guo, Yinan
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
Minist Educ China, Key Lab Syst Control & Informat Proc, Shanghai 200240, Peoples R China
China Univ Mining & Technol Beijing, Sch Mech Elect & Informat Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
Guo, Yinan
Wang, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Automat, Changsha 410083, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
Wang, Yong
Liang, Jing
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Elect Engn, Zhengzhou 450001, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
Liang, Jing
Gong, Dunwei
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ Sci & Technol, Sch Informat Sci & Technol, Qingdao 266061, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
Gong, Dunwei
Yang, Shengxiang
论文数: 0引用数: 0
h-index: 0
机构:
De Montfort Univ, Inst Artificial Intelligence, Sch Comp Sci & Informat, Leicester LE1 9BH, EnglandChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
Chen, Guoyu
Guo, Yinan
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
Minist Educ China, Key Lab Syst Control & Informat Proc, Shanghai 200240, Peoples R China
China Univ Mining & Technol Beijing, Sch Mech Elect & Informat Engn, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
Guo, Yinan
Wang, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Automat, Changsha 410083, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
Wang, Yong
Liang, Jing
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Elect Engn, Zhengzhou 450001, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
Liang, Jing
Gong, Dunwei
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ Sci & Technol, Sch Informat Sci & Technol, Qingdao 266061, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
Gong, Dunwei
Yang, Shengxiang
论文数: 0引用数: 0
h-index: 0
机构:
De Montfort Univ, Inst Artificial Intelligence, Sch Comp Sci & Informat, Leicester LE1 9BH, EnglandChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China