On Existence and Numerical Solution of a New Class of Nonlinear Second Degree Integro-Differential Volterra Equation with Convolution Kernel

被引:0
|
作者
Lemita, S. [1 ,2 ]
Guessoumi, M. L. [3 ]
机构
[1] Echahid Cheikh Larbi Tebessi Univ, Dept Math & Comp Sci, Tebessa 12022, Algeria
[2] Univ 8 Mai 1945, Lab Math Appl & Modelisat, Guelma 24000, Algeria
[3] Ecole Normale Super Ouargla, Dept Sci Exact, Ouargla 30000, Algeria
关键词
Volterra equation; integro-differential equation; convolution kernel; Schauder fixed point theorem; Nystr & ouml; m method; INTEGRAL-EQUATION; FREDHOLM;
D O I
10.1134/S1995423924030042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers a new class of nonlinear second degree integro-differential Volterra equation with a convolution kernel. We derive some sufficient conditions to establish the existence and uniqueness of solutions by using Schauder fixed point theorem. Moreover, the Nystr & ouml;m method is applied to obtain the approximate solution of the proposed Volterra equation. A numerical examples are given to validate the adduced results.
引用
收藏
页码:245 / 261
页数:17
相关论文
共 50 条