On Existence and Numerical Solution of a New Class of Nonlinear Second Degree Integro-Differential Volterra Equation with Convolution Kernel

被引:0
|
作者
Lemita, S. [1 ,2 ]
Guessoumi, M. L. [3 ]
机构
[1] Echahid Cheikh Larbi Tebessi Univ, Dept Math & Comp Sci, Tebessa 12022, Algeria
[2] Univ 8 Mai 1945, Lab Math Appl & Modelisat, Guelma 24000, Algeria
[3] Ecole Normale Super Ouargla, Dept Sci Exact, Ouargla 30000, Algeria
关键词
Volterra equation; integro-differential equation; convolution kernel; Schauder fixed point theorem; Nystr & ouml; m method; INTEGRAL-EQUATION; FREDHOLM;
D O I
10.1134/S1995423924030042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers a new class of nonlinear second degree integro-differential Volterra equation with a convolution kernel. We derive some sufficient conditions to establish the existence and uniqueness of solutions by using Schauder fixed point theorem. Moreover, the Nystr & ouml;m method is applied to obtain the approximate solution of the proposed Volterra equation. A numerical examples are given to validate the adduced results.
引用
收藏
页码:245 / 261
页数:17
相关论文
共 50 条
  • [1] Analytical and numerical study for an integro-differential nonlinear volterra equation with weakly singular kernel
    Ghiat, Mourad
    Guebbai, Hamza
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04) : 4661 - 4674
  • [2] Analytical and numerical study for an integro-differential nonlinear volterra equation with weakly singular kernel
    Mourad Ghiat
    Hamza Guebbai
    Computational and Applied Mathematics, 2018, 37 : 4661 - 4674
  • [3] Analytical and numerical study for an integro-differential nonlinear Volterra equation
    Guebbai, H.
    Aissaoui, M. Z.
    Debbar, I.
    Khalla, B.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 229 : 367 - 373
  • [4] On the new integro-differential nonlinear Volterra-Chandrasekhar equation
    Khellaf, Ammar
    Aissaoui, Mohamed-Zine
    ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2022, : 203 - 214
  • [5] A series solution of the nonlinear Volterra and Fredholm integro-differential equations
    Shidfar, A.
    Molabahrami, A.
    Babaei, A.
    Yazdanian, A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (02) : 205 - 215
  • [6] On an Integro-Differential Fractional Nonlinear Volterra–Caputo Equation
    S. Guemar
    H. Guebbai
    S. Lemita
    Numerical Analysis and Applications, 2021, 14 : 316 - 334
  • [7] Solutions for a class of nonlinear Volterra integral and integro-differential equation using cyclic -contraction
    Nashine, Hemant Kumar
    Pathak, R. P.
    Somvanshi, Piyusha S.
    Pantelic, Slavisa
    Kumam, Poom
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [8] Solutions for a class of nonlinear Volterra integral and integro-differential equation using cyclic (φ,ψ,θ)-contraction
    Hemant Kumar Nashine
    RP Pathak
    Piyusha S Somvanshi
    Slavisa Pantelic
    Poom Kumam
    Advances in Difference Equations, 2013
  • [9] About a New Nonlinear Integro-Differential Equation of Volterra-Strum-Liouville Type with a Weakly Singular Kernel
    Mezhoud, Djaafer
    Benssaad, Meryem
    Lemita, Samir
    Khellaf, Ammar
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [10] On an Integro-Differential Fractional Nonlinear Volterra-Caputo Equation
    Guemar, S.
    Guebbai, H.
    Lemita, S.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2021, 14 (04) : 316 - 334