Energy-aware remanufacturing process planning and scheduling problem using reinforcement learning-based particle swarm optimization algorithm

被引:3
|
作者
Wang, Jun [1 ]
Zheng, Handong [1 ]
Zhao, Shuangyao [1 ]
Zhang, Qiang [1 ]
机构
[1] Hefei Univ Technol, Sch Management, Key Lab Proc Optimizat & Intelligent Decis Making, Minist Educ, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy-aware; Particle swarm optimization; Reinforcement learning; Remanufacturing process planning; Remanufacturing scheduling; SYSTEM;
D O I
10.1016/j.jclepro.2024.143771
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Solving remanufacturing process planning and scheduling problem collaboratively and leveraging the complementary attributes of process planning and shop scheduling to attain improved production flow and process routes, are crucial for further enhancing the environmental and economic benefits of remanufacturing. Most of the existing works regard these two segments as independent and solve them separately, which hinder the further improvements of remanufacturing system performance. Besides, studies on energy-aware remanufacturing scheduling have employed machine turn on/off strategy to achieve energy reductions. However, not all machines are suitable for the turn on/off strategy. Therefore, a new energy-aware remanufacturing process planning and scheduling model with process sequence flexibility is proposed. This model not only simultaneously solves the remanufacturing process planning and scheduling problem, but also employs machine speed-switching strategy to reduce energy consumption. To solve this model, a reinforcement learning-based particle swarm optimization algorithm with an efficient multi-dimensional encoding scheme is proposed, in which, a hybrid population initialization strategy, a novel reinforcement learning-based multi-directional guide position-updating mechanism, a local search strategy, and a restart mechanism are devised to enhance the performance. Simulation experiments were conducted on 18 sets of instances with different scales to compare the proposed algorithm with other advanced algorithms. The experimental results confirmed the superiority of the proposed algorithm.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Reinforcement learning-based particle swarm optimization for sewage treatment control
    Lu Lu
    Hui Zheng
    Jing Jie
    Miao Zhang
    Rui Dai
    Complex & Intelligent Systems, 2021, 7 : 2199 - 2210
  • [12] Reinforcement learning-based particle swarm optimization for sewage treatment control
    Lu, Lu
    Zheng, Hui
    Jie, Jing
    Zhang, Miao
    Dai, Rui
    COMPLEX & INTELLIGENT SYSTEMS, 2021, 7 (05) : 2199 - 2210
  • [13] Improved Particle Swarm Optimization Algorithm Combined with Reinforcement Learning for Solving Flexible Job Shop Scheduling Problem
    Gao, Yi-Jie
    Shang, Qing-Xia
    Yang, Yuan-Yuan
    Hu, Rong
    Qian, Bin
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 288 - 298
  • [14] A new bifuzzy optimization method for remanufacturing scheduling using extended discrete particle swarm optimization algorithm
    Shi, Jiaxuan
    Zhang, Wenyu
    Zhang, Shuai
    Chen, Jie
    COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 156
  • [15] An energy-aware method for data replication in the cloud environments using a Tabu search and particle swarm optimization algorithm
    Ebadi, Yalda
    Navimipour, Nima Jafari
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2019, 31 (01)
  • [16] Reinforcement learning-assisted particle swarm algorithm for effluent scheduling problem with an influent estimation of WWTP
    Han, HongGui
    Xu, ZiAng
    Wang, JingJing
    SWARM AND EVOLUTIONARY COMPUTATION, 2025, 94
  • [17] Energy-aware integrated process planning and scheduling for job shops
    Dai, Min
    Tang, Dunbing
    Xu, Yuchun
    Li, Weidong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2015, 229 : 13 - 26
  • [18] A new Reinforcement Learning-based Memetic Particle Swarm Optimizer
    Samma, Hussein
    Lim, Chee Peng
    Saleh, Junita Mohamad
    APPLIED SOFT COMPUTING, 2016, 43 : 276 - 297
  • [19] Swarm Reinforcement Learning Algorithm Based on Particle Swarm Optimization Whose Personal Bests Have Lifespans
    Iima, Hitoshi
    Kuroe, Yasuaki
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2009, 5864 : 169 - 178
  • [20] Energy-aware Task Scheduling in Wireless Sensor Networks based on Cooperative Reinforcement Learning
    Khan, Muhidul Islam
    Rinner, Bernhard
    2014 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC), 2014, : 871 - 877