Adaptive Dynamic Programming-Based Attitude Optimal Tracking Control for a Quadrotor with Unmeasured Velocities and Model Uncertainties

被引:6
作者
Guo, Junrui [1 ]
Gao, Xiaoyang [1 ]
Li, Tieshan [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Quadrotor; optimal tracking control; neural network velocity observer; model uncertainties; adaptive dynamic programming; ROTOR UAVS; SYSTEMS; DESIGN;
D O I
10.1142/S2737480724500079
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes an optimal output feedback tracking control scheme of the quadrotor unmanned aerial vehicle (UAV) attitude system with unmeasured angular velocities and model uncertainties. First, neural network (NN) is used to approximate the model uncertainties. Then, an NN velocity observer is established to estimate the unmeasured angular velocities. Further, a quadrotor output feedback attitude optimal tracking controller is designed, which consists of an adaptive controller designed by backstepping method and an optimal compensation term designed by adaptive dynamic programming. All signals in the closed-loop system are proved to be bounded. Finally, numerical simulation example shows that the quadrotor attitude tracking scheme is effective and feasible.
引用
收藏
页数:22
相关论文
共 37 条
[1]   Fuzzy Based Backstepping Control Design for Stabilizing an Underactuated Quadrotor Craft under Unmodelled Dynamic Factors [J].
Abro, Ghulam E. Mustafa ;
Zulkifli, Saiful Azrin B. M. ;
Ali, Zain Anwar ;
Asirvadam, Vijanth Sagayan ;
Chowdhry, Bhawani Shankar .
ELECTRONICS, 2022, 11 (07)
[2]   Enhanced Backstepping Controller Design with Application to Autonomous Quadrotor Unmanned Aerial Vehicle [J].
Basri, Mohd Ariffanan Mohd ;
Husain, Abdul Rashid ;
Danapalasingam, Kumeresan A. .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2015, 79 (02) :295-321
[3]   A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems [J].
Bhasin, S. ;
Kamalapurkar, R. ;
Johnson, M. ;
Vamvoudakis, K. G. ;
Lewis, F. L. ;
Dixon, W. E. .
AUTOMATICA, 2013, 49 (01) :82-92
[4]  
Bouabdallah S., 2004, P IEEE RSJ INT C INT, P2451, DOI [DOI 10.1109/IROS.2004.1389776, 10.1109/iros.2004.1389776]
[5]   Decentralized output-feedback neural control for systems with unknown interconnections [J].
Chen, Weisheng ;
Li, Junmin .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (01) :258-266
[6]  
Chi WH, 2019, CHIN CONT DECIS CONF, P3108, DOI [10.1109/CCDC.2019.8832799, 10.1109/ccdc.2019.8832799]
[7]   Output Feedback Control of a Quadrotor UAV Using Neural Networks [J].
Dierks, Travis ;
Jagannathan, Sarangapani .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (01) :50-66
[8]   Robust Adaptive Sliding Mode Control Based on Iterative Learning for Quadrotor UAV [J].
Fu, Xingjian ;
He, Jiahui .
IETE JOURNAL OF RESEARCH, 2023, 69 (08) :5484-5496
[9]   Optimal Fuzzy Output Feedback Control for Dynamic Positioning of Vessels With Finite-Time Disturbance Rejection Under Thruster Saturations [J].
Gao, Xiaoyang ;
Long, Yue ;
Li, Tieshan ;
Hu, Xin ;
Chen, C. L. Philip ;
Sun, Fuchun .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (10) :3447-3458
[10]   Direct adaptive NN control of a class of nonlinear systems [J].
Ge, SS ;
Wang, C .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (01) :214-221